|
Patricia L. Suárez, A. D. S., Boris X. Vintimilla. (2021). Cycle generative adversarial network: towards a low-cost vegetation index estimation. In IEEE International Conference on Image Processing (ICIP 2021) (Vol. 2021-September, pp. 2783–2787).
Abstract: This paper presents a novel unsupervised approach to estimate the Normalized Difference Vegetation Index (NDVI).The NDVI is obtained as the ratio between information from the visible and near infrared spectral bands; in the current work, the NDVI is estimated just from an image of the visible spectrum through a Cyclic Generative Adversarial Network (CyclicGAN). This unsupervised architecture learns to estimate the NDVI index by means of an image translation between the red channel of a given RGB image and the NDVI unpaired index’s image. The translation is obtained by means of a ResNET architecture and a multiple loss function. Experimental results obtained with this unsupervised scheme show the validity of the implemented model. Additionally, comparisons with the state of the art approaches are provided showing improvements with the proposed approach.
|
|
|
Cristina L. Abad, Yi Lu, & Roy H. Campbell. (2011). DARE: Adaptive Data Replication for Efficient Cluster Scheduling. In IEEE International Conference on Cluster Computing, 2011 (pp. 159–168).
Abstract: Placing data as close as possible to computation is a common practice of data intensive systems, commonly referred to as the data locality problem. By analyzing existing production systems, we confirm the benefit of data locality and find that data have different popularity and varying correlation of accesses. We propose DARE, a distributed adaptive data replication algorithm that aids the scheduler to achieve better data locality. DARE solves two problems, how many replicas to allocate for each file and where to place them, using probabilistic sampling and a competitive aging algorithm independently at each node. It takes advantage of existing remote data accesses in the system and incurs no extra network usage. Using two mixed workload traces from Facebook, we show that DARE improves data locality by more than 7 times with the FIFO scheduler in Hadoop and achieves more than 85% data locality for the FAIR scheduler with delay scheduling. Turnaround time and job slowdown are reduced by 19% and 25%, respectively.
|
|
|
Jorge L. Charco, Boris X. Vintimilla, & Angel D. Sappa. (2018). Deep learning based camera pose estimation in multi-view environment. In 14th IEEE International Conference on Signal Image Technology & Internet based Systems (SITIS 2018) (pp. 224–228).
Abstract: This paper proposes to use a deep learning network architecture for relative camera pose estimation on a multi-view environment. The proposed network is a variant architecture of AlexNet to use as regressor for prediction the relative translation and rotation as output. The proposed approach is trained from scratch on a large data set that takes as input a pair of images from the same scene. This new architecture is compared with a previous approach using standard metrics, obtaining better results on the relative camera pose.
|
|
|
Henry O. Velesaca, Raul A. Mira, Patricia L. Suarez, Christian X. Larrea, & Angel D. Sappa. (2020). Deep Learning based Corn Kernel Classification. In The 1st International Workshop and Prize Challenge on Agriculture-Vision: Challenges & Opportunities for Computer Vision in Agriculture on the Conference Computer on Vision and Pattern Recongnition (CVPR 2020) (Vol. 2020-June, pp. 294–302).
Abstract: This paper presents a full pipeline to classify sample sets of corn kernels. The proposed approach follows a segmentation-classification scheme. The image segmentation is performed through a well known deep learning based
approach, the Mask R-CNN architecture, while the classification is performed by means of a novel-lightweight network specially designed for this task—good corn kernel, defective corn kernel and impurity categories are considered.
As a second contribution, a carefully annotated multitouching corn kernel dataset has been generated. This dataset has been used for training the segmentation and
the classification modules. Quantitative evaluations have been performed and comparisons with other approaches provided showing improvements with the proposed pipeline.
|
|
|
Patricia Suarez, H. V., Dario Carpio, Angel Sappa, Patricia Urdiales, Francisca Burgos. (2022). Deep Learning based Shrimp Classification. In 17th International Symposium on Visual Computing, San Diego, USA, Octubre 3-5. Lecture Notes in Computer Science (LNCS) (Vol. 13598 LNCS, pp. 36–45).
|
|
|
Patricia L. Suarez, Angel D. Sappa, Boris X. Vintimilla, & Riad I. Hammoud. (2018). Deep Learning based Single Image Dehazing. In 14th IEEE Workshop on Perception Beyond the Visible Spectrum – In conjunction with CVPR 2018. Salt Lake City, Utah. USA.
Abstract: This paper proposes a novel approach to remove haze
degradations in RGB images using a stacked conditional
Generative Adversarial Network (GAN). It employs a triplet
of GAN to remove the haze on each color channel independently.
A multiple loss functions scheme, applied over a
conditional probabilistic model, is proposed. The proposed
GAN architecture learns to remove the haze, using as conditioned
entrance, the images with haze from which the clear
images will be obtained. Such formulation ensures a fast
model training convergence and a homogeneous model generalization.
Experiments showed that the proposed method
generates high-quality clear images.
|
|
|
Boris Vintimilla, J. V., Henry Velesaca. (2023). Deep Learning-based Human Height Estimation from a Stereo Vision System. In IEEE 13th International Conference on Pattern Recognition Systems (ICPRS) 2023, 4-7 julio 2023.
|
|
|
Henry Velesaca, B. V., Jorge Vulgarin, Coen Antens & Alberto Rubio Pérez. (2024). Deep Learning-based Multimodal Sensing Framework for AntiSpoofing Systems. In Fourth International Conference on Innovations in Computational Intelligence and Computer Vision (ICICV 2024), .
|
|
|
Patricia L. Suárez, A. D. S. and B. X. V. (2021). Deep learning-based vegetation index estimation. In Generative Adversarial Networks for Image-to-Image Translation Book. (Vol. Chapter 9, pp. 205–232).
|
|
|
Xavier Soria, A. S., Patricio Humanante, Arash Akbarinia. (2023). Dense extreme inception network for edge detection. Pattern Recognition, Vol. 139.
|
|