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Abstract—This paper proposes a novel approach to remove
haze from RGB images using a near infrared images based
on a dense stacked conditional Generative Adversarial Network
(CGAN). The architecture of the deep network implemented
receives, besides the images with haze, its corresponding image in
the near infrared spectrum, which serve to accelerate the learning
process of the details of the characteristics of the images. The
model uses a triplet layer that allows the independence learning
of each channel of the visible spectrum image to remove the haze
on each color channel separately. A multiple loss function scheme
is proposed, which ensures balanced learning between the colors
and the structure of the images. Experimental results have shown
that the proposed method effectively removes the haze from the
images. Additionally, the proposed approach is compared with a
state of the art approach showing better results.

Index Terms—Infrared imaging, Dense, Stacked CGAN, Cross-
spectral, Convolutional networks

I. INTRODUCTION

The images can be seriously affected by different causes,
one of the most common are the natural phenomena that occur,
such as fog, dust, rain, snow, etc. This considerably reduces
the visibility of the objects in the images, thus affecting
the understanding of the same. Therefore, processes such
as the detection, segmentation or the recognition of objects,
among others, will not be able to obtain results that meet the
required objectives. Outdoor scenes usually suffer mainly from
low contrast and poor visibility due to the adverse weather
conditions that cause airborne particles to scatter the light
present in the atmosphere. One of the atmospheric effects that
occur is the mist, which is independent of the brightness of
the scene and generates attenuation effects. It is affected by
ambient light at the time of image acquisition. It is necessary
to consider that at a greater distance from the focus of the
more diffuse camera the image becomes.

Improving the quality of images has been one of the
problems that computer vision has sought to solve, several
approaches have been proposed, especially aimed at removing
climatic effects such as haze; some traditional techniques were
focused for the elimination of the haze presented on images
using the characteristics present on them. In [1] a method

based on generic regularity in natural images is presented
where the pixels of small image patches usually exhibit a 1D
distribution in the RGB color space, known as color lines. This
method derives a local training model that explains the color
lines in the context of fuzzy scenes and uses it to recover scene
transmission based on the displacement of the lines from the
origin. In [2] a novel system is proposed to explore, improve
and manipulate casual outdoor photographs, combining them
with georeferenced digital terrain and existing urban models.
A simple interactive registration process is used to align a
photograph with that model. These methods generally involve
multi-step approaches that use depth information to eliminate
these degradation effects. Most methods to eliminate haze
in the images only consider the use of assumptions of hard
thresholds or user input to estimate atmospheric light.

In recent years, deep learning through convolutional neural
networks has been widely used in a wide range of fields.
In deep learning, these networks are found to give the
most accurate results in solving real-world problems. Among
the different network architectures, Generative Adversarial
Networks (GANs) have obtained excellent results to solve
problems such as [3] colorization, face generation, cross-
spectral similarity [4], single image dehazing [5] or NVDI
vegetation index generation [6]. Some of these approaches
have used NIR images to improve the results obtained by the
networks. In a previous work [5] we propose to remove the
haze from a image implementing a CGAN network working
with only RGB images. In the current work we tackles the
dehaze problem proposing the usage of cross-spectral images
(RGB+NIR) to enhance the removal process implemented by
our stacked dense CGAN network.

The NIR spectrum is independent of the brightness and
color of the targets, including non-visible illumination re-
quirements. Images from the NIR spectral band have surface
reflection which is material dependent. This means that the dif-
ference in the NIR intensities is not only due to the particular
color of the material, but also to the absorption and reflectance
of colors. Nowadays, although the additional information that
can be obtained from the images of the infrared spectrum,



the people interested in the visual analysis of the information
prefer that images are able to be perceptible to the human
eye, this means that they are in RGB representation, because
it is easier for people to understand the scene to be analyzed
due to the familiarity of the shapes and colors of the objects,
facilitating decision making.

In our approach, each channel is mapped in a three-
dimensional space, using a stacked dense CGAN model to
accelerate convergence, we propose a dense model to to im-
prove the accuracy and efficiency of training.The manuscript
is organized as follows. Section II presents works related to
the haze removal problem, as well as the basic concepts and
notation of GAN networks. The proposed approach is detailed
in section III. The experimental results with a set of real
images are presented in section IV. Finally, the conclusions
are given in section V.

II. RELATED WORK

Different image haze removal techniques have been pro-
posed in last decade, some of them based on image attributes,
transmission map, air light conditions, atmospheric scattering
model, etc. (e.g., [7]). In [8] the authors proposed an enhanced
detail and dehaze technique for haze removal based on mod-
ified channel prior scheme and combine the dehazed image
with a non-sky detail layer using enhanced method in order
to improve the image details. After that, the recovered image
contrast will be enhanced based on a histogram equalization
approach. Also using a haze model, [9] proposes an improved
contrast enhanced restoration. This technique is based on a
quadtree subdivision searching method, which the sky area
of multi-channel polarization image are extracted automati-
cally, and the atmospheric light and degree of polarization
is calculated; then the scene depth information of image is
calculated based on contrast enhancement method. Finally, the
atmospheric intensity is thinly restored by guided filter, and the
degraded image is restored. In [10] a haze removal technique
that uses a fusion-based variational method is presented, which
combine the minimized outputs of two energy functionals to
produce a haze-free version.

The authors in [11] present a detailed survey and ex-
perimental analysis on DCP-based methods will explain the
effectiveness of the individual step of the dehazing process and
will facilitate development of advanced dehazing algorithms.
Another model based approach has been presented in [12],
which proposes an algorithm based on an image filtering,
dark channel prior, estimations of atmospheric light to obtain
an unhazed image and finally improving the local contrast.
Another method proposed in [13], consists of a combined
algorithm based on both dark channel prior and histogram
optimization, which can make the image contrast stretching,
so the impact of the haze on the image can be weakened. If
the obtained dehazing image cannot meet the minimum quality
required, the dark channel prior can be used to estimate the
haze intensity.

Lately, novel image haze removal approaches based on deep
learning techniques have been proposed obtaining acceptable

results. In [14] a model based on a reformulated atmospheric
scattering model is proposed, instead of estimating the trans-
mission matrix and the atmospheric light separately. Cai et.al.
[15] propose a trainable end-to-end system called DehazeNet,
for medium transmission estimation. DehazeNet takes a hazy
image as input, and outputs its medium transmission map
that is subsequently used to recover a haze-free image via
atmospheric scattering model. More recently the Generative
Adversarial Network (GAN) framework has been used ob-
taining appealing results. In [16] the authors propose a unified
single removal haze GAN network that jointly estimates the
transmission map and performs the haze process; the network
is trained using synthetic images and a two-term loss function.
Additionally, in the GAN architecture a stacking strategy is
proposed to speed up the learning process. Furthermore, the
proposed network is trained using real images. Also in [17] the
authors proposes a method for combining dark channel prior
(DCP) and bright channel prior (BCP) for single image dehaz-
ing. The proposed technique achieves airlight approximations
by implementing numerical proximity of atmospheric light,
which use the average value of the DCP and BCP. A previous
work presented in [5] proposed an novel stacked conditional
GAN to removal the haze on RGB image, and also proposes
a multiple loss to accelerate the learning process at training
time, this approach have obtained good results. Based on this
work, our current work proposed a cross-spectral dense CGAN
to achieve better accuracy and reduce the training time.

Generative based deep learning models can be used to take
a collection of points and infer a function that describes the
distribution that generated them. The generator model after the
training could create samples of the distribution that you just
learned, this allow the network to learn to generate data with
the same internal structure as other data. It is a framework pre-
sented on [18] for estimating generative models via an adver-
sarial process, in which simultaneously two models are trained:
a generative model G that captures the data distribution, and
a discriminative model D that estimates the probability that
a sample came from the training data rather than G. The
training procedure for G is to maximize the probability of D
making a mistake. This framework corresponds to a minimax
two-player game. In the space of arbitrary functions G and
D, a unique solution exists, with G recovering the training
data distribution and D equal to 1/2 everywhere. According
to [19], to learn the generators distribution pg over data x,
the generator builds a mapping function from a prior noise
distribution pz to a data space G(z; θg). The discriminator,
D(x; θd), outputs a single scalar representing the probability
that x came from training data rather than pg . G and D are
both trained simultaneously, the parameters for G are adjusted
to minimize log(1−D(G(z))) and for D to minimize logD(x)
with a value function V (G,D):

min

G

max

D
V (D,G) = Ex∼p data(x)[logD(x)] + (1)

Ez ∼p data(z)[log(1−D(G(z)))].



GANs networks can be extended to a conditional model
if both the generator and discriminator are conditioned on
some extra information y. We can perform the conditioning by
feeding y into both discriminator and generator as additional
input layer. The objective function of a two-player minimax
game would be as:

min

G

max

D
V (D,G) = Ex ∼p data(x)[logD(x|y)] + (2)

Ez ∼p data(z)[log(1−D(G(z|y)))].

Recently applications of GANs have shown that they can
produce excellent samples. According to [20], training GANs
networks requires finding a Nash equilibrium of a non-convex
game with continuous, highdimensional parameters. GANs are
typically trained using gradient descent techniques that are
designed to find a low value of a cost function, rather than
to find the Nash equilibrium of a game. When used to seek
for a Nash equilibrium, these algorithms may fail to converge.
In that work, they introduce several techniques intended to
encourage convergence of the GANs game, motivated by a
heuristic understanding of the non-convergence problem. They
lead to improved semi-supervised learning peformance and
improved sample generation.

Considering the use of conditional generative networks
models, this work propose the usage of an architecture similar
to the one presented in [5], but by including a densely
connected layers architecture according to [21] to perform
shorter connections between the layers to merge the features
and make it more deeper, accurate, and efficient to train.
Also the model include a stacked network inspired on the
work presented in [22], which consists in a top-down stack of
GANs, each designed to generate lower-level representations
conditioned on higher level representations. In the current
work we propose a dense stacked conditional learning process
of the generator-discriminator to accelerate the convergence
of the network, this stacking strategy allows accelerating the
learning process to generate a clear image representation from
those affected by haze. The current work also proposes include
the corresponding NIR image to increase the effectiveness
of the haze removal process, and a multiple loss term for
discriminator, which makes the learning process continuous
and differentiable and consequently the times of convergence
for the generalization of learning are improved.

III. PROPOSED APPROACH

The proposed approach is based on a cross-spectral gen-
erative adversarial dense network stacked at several levels to
accelerate the training process. This model, unlike the one
proposed in [5], receives as an additional input the image
with haze, its corresponding in the near infrared spectrum
with the objective of obtaining an image with greater clarity
in the details of the images. The GANs generate the image
without haze starting from the images of both RGB and NIR
concatenated spectra, this architecture with the stacked scheme
uses a multiple loss to learn more efficiently and to improve

the convergence of the model, which allows to accelerate the
obtained diversity and to generalize the learning model. A
l1 regularization term has been added at every layer of the
generator network in order to prevent the coefficients to fit so
perfectly to overfit and to introduce more robustness to the
generalization of the model; additionally, it helps reducing the
time to reach a well trained network. l1 helps perform feature
selection in sparse feature spaces, this help to know which
features are helpful and which are redundant.

The network is designed to learn how to generate new
images without haze from an conditional latent distribution.
In our case, the generator network has been modified to use
feature hierarchical representation; we use three levels of dense
stacking conditional learning process. Additionally, the model
has been designed to receive cross-spectral concatenated im-
ages as an input and use a multiple loss function. In order
to optimize the model generalization, the GAN framework
is reformulated for a conditional generative image modeling
tuple. In other words, the generative model G(z; θg) is trained
from a haze and an infrared concatenated image and contrary
to the original GAN model formulation, the random noise z is
not used; with the assumption that the randomness has already
been preserved by the conditioning variables provided by the
images with haze, in order to produce a clear RGB image.
The discriminative model D(z; θd) is trained to assign the
correct label to the generated clear RGB image, according to
the provided original color image, which is used as a ground
truth. Variables (θg) and (θd) represent the weighting values
for the generative and discriminative networks.

Our proposed approach introduce a dense connection be-
tween layers on the architecture, according to [21] we propose
a network that implements shorter connections generally at the
beginning and the end of the learning layers in the model, this
give to the network the capacity to train more rapidly using
less layers. Use dense connections have several compelling
advantages: they alleviate the vanishing-gradient problem,
strengthen feature propagation, encourage feature reuse, and
substantially reduce the number of parameters. Applying this
kind of models of connectivity between the layers achieved as
a direct consequence of the input concatenation of RGB and
NIR image at any level of the learning layers, permits that all
the feature maps learned by any of the dense net layers can
be accessed by all subsequent layers. This encourages feature
reuse throughout the network, and leads to more compact
models.

In addition, similar to [5], multiple loss functions (L) have
been implemented, which was conformed by the combination
of the adversarial loss plus the intensity loss (MSE), the
structural loss (SSIM) and the image quality loss (IQ). This
combined loss function has been defined to avoid the usage
of only a pixel-wise loss to measure the mismatch between
a generated image and its corresponding ground-truth image.
This multi-term loss function is better designed to human
perceptual criteria of image quality, which is detailed below.

The adversarial loss is designed to minimize the cross-
entropy to improve the texture loss :



Conditional Generative Adversarial Dense Network Model : 
 (G) Triplet Level Dehazing Generator Network  
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Fig. 1. Illustration of the proposed triplet cross-spectral dense CGAN architecture used for image dehazing.

LAdversarial = −
∑
i

logD(Gw(Iz|y), (Ix|y), (3)

where D and Gw are the discriminator and generator of the
real Ix|y and generated Iz|y images conditioned by the haze
and near infrared image feeded in each channel of the Stacked
Gan Network.

The intensity loss is defined as:

LIntensity =
1

NM

N∑
i=1

M∑
j=1

(RGBei,j −RGBgi,j)2, (4)

where RGBei,j is the estimated RGB representation and
RGBgi,j is the ground-truth RGB image. This loss measures
the difference in intensity of the pixels between the images
without considering texture and content comparisons. This loss
penalizes larger errors, but is more tolerant to small errors,
without considering the specific structure in the image.

To address the limitations of the simple intensity loss func-
tion, the usage of a reference-based measure is proposed. One

of the reference-based index is the Structural Similarity Index
(SSIM) [23], which evaluates images accounting for the fact
that the human visual perception system is sensitive to changes
in local structure; the purpose of using this index defines
the structural information in an image as those attributes that
represent the structure of objects in the scene, independent of
the average luminance and contrast. The structural loss for a
pixel p is defined as:

LSSIM =
1

NM

P∑
p=1

1− SSIM(p), (5)

where SSIM(p) is the Structural Similarity Index (see [23]
for more details) centered in pixel p of the patch P .

Another loss function that proposes this work is based on
the universal image quality index, the method proposed by [24]
was designed to model any image distortion via a combination
of three factors: loss of correlation, luminance distortion, and
contrast distortion.



The main reason to use this quality index as a loss function
is its strong ability to measure the structural distortions exist-
ing in the images with haze. It is important to bear in mind
that because the signals of the images are non-stationary it is
preferable to evaluate the quality of the images by measuring
their statistical characteristics in a local way and then combine
them all together in a single measurement of image quality. If
there are a total of M steps, at the j-th step the local quality
index Qj is computed, then the overall quality index is given
by :

Q =
1

M

M∑
j=1

Qj , (6)

Hence, we can formulate the quality loss function as:

LQ =
1

M

M∑
j=1

(1−Qj). (7)

The final loss function (L) used in this work is the accu-
mulative weighted sum of the individual adversarial, intensity,
structural and quality loss functions:

Lfinal = 0.40LAdversarial + 0.25LIntensity+
+0.20LSSIM + 0.15LQ. (8)

The proportion assigned to each loss has been defined based
on the variability of the values obtained by each of the losses
during the training process.

The dense cross-spectral stacked CGAN network proposed
has been trained using Stochastic AdamOptimazer since it is
well suited for problems that are large in terms of data and/or
parameters, very appropriate for non-stationary objectives and
for problems with very noisy/or sparse gradients. Also the
Hyper-parameters have intuitive interpretation and typically re-
quire less tuning, prevents overfitting and leads to convergence
faster. Furthermore, it is computationally efficient, has little
memory requirements, is invariant to diagonal rescaling of the
gradients. The image dataset was normalized in a (-1,1) range.
The following hyper-parameters were used during the training
process: learning rate 0.00004 for the generator and 0.00003
for the discriminator networks respectively; epsilon = 1e-08;
exponential decay rate for the 1st moment momentum 0.4 for
discriminator and 0.3 for the generator; weight initializer with
a standard deviation of 0.04582; l1 weight regularizer; weight
decay 1e-2; leak relu 0.21 and patch’s size of 64×64.

The triplet architecture, see Fig. 1, maintains similar struc-
ture presented in [5]. Basically in the architecture a layer of
learning was suppressed, as well as the depth of the learning
layers was decreased because of the concatenation of the NIR
with the haze image. The learning architecture is conformed
by convolutional, de-convolutional, relu, leak-relu, fully con-
nected and activation function tanh and sigmoid for generator
and discriminator networks respectively. Additionally, every
layer of the model uses batch normalization for training any
type of mapping to prevent underfitting. It is very important

to maintain the spatial information in the generator model,
there is not pooling and drop-out layers and only the stride
of 1 is used to avoid downsize the image shape. To prevent
overfitting we have added a l1 regularization term (λ) in the
generator model, this regularization has the particularity that
the weights matrix end up using only a small subset of their
most important inputs and become quite resistant to noise in
the inputs. Additionally the architecture includes dense model
implemented by at the first and bottom layers in the model
to increase the generalization and obtain more optimization of
the learning process.

The generator (G) and discriminator (D) are both feedfor-
ward deep neural networks that play a min-max game between
one another. The generator takes as input on each channel the
hazy and NIR image and it is transformed into the form of
the data we are interested in imitating, in our case a RGB
clear image. The discriminator takes as an input a set of data,
either real image (z) or generated image (G(z)), and produces
a probability of that data being real (P (z)). The discriminator
is optimized in order to increase the likelihood of giving a high
probability to the real data (the ground truth given image) and
a low probability to the fake generated data (wrongly clarified
haze image), as introduced in [19]; thus, the dense conditional
discriminator network is updated as follow:

5θd
1

m

m∑
i=1

[logD(x(i)) + log(1−D(G(y(i), z(i))))], (9)

where m is the number of patches in each batch, x is the
ground truth image, y is the image without haze (RGB)
generated by the network and z is the random Gaussian
sampled noise. The weights of the discriminator network (D)
are updated by ascending its stochastic gradient. On the other
hand, the generator is then optimized in order to increase
the probability of the generated data being highly rated, it
is updated as follow:

5θg
1

m

m∑
i=1

log(1−D(G(y(i), z(i)))), (10)

where m is the number of samples in each batch, y is the
image without haze (RGB) generated by the network and z
is the random Gaussian sampled noise. Like in the previous
case, the weights of the generator network (G) are updated by
descending its stochastic gradient.

IV. EXPERIMENTS RESULTS

A. Results and comparisons

The proposed architecture has been evaluated using real
hazed images and their corresponding clear RGB and NIR
infrared representations obtained from [25]. Figure 2 presents
a set of images from this dataset. From all these images
85000 pairs of patches of (32×32 pixels) have been cropped
both, in the hazed images as well as in the corresponding
clear RGB images. Additionally, 8500 pairs of patches have
been also generated for validation. On average, every training



(a) (b) (c)

Fig. 2. Set of images from the dataset obtained from [25]: (a) NIR image, (b) hazy image and (c) Groundtruth image.

Light Haze Light Haze Dense Haze Dense Haze Light Haze Light Haze Dense Haze Dense Haze

Fig. 3. (1st row) NIR patches. (2nd row) Haze patches. (3rd row) Results from the proposed approach dense CGAN (Loss Function: Lfinal). (4th row)
Ground truth images.

process took about 60 hours using a 3.2 eight core processor
with 16GB of memory with a NVIDIA TITAN V GPU.
Some patches, with the corresponding result obtained with
the proposed approach are depicted in Fig. 3; just for making
easier the evaluation of results from the proposed approach
patches have been split up into Light Haze and Dense Haze.

The quantitative evaluation consists of measuring several
metrics with the results obtained with the proposed Stacked
GAN approach when different combinations of the proposed
loss functions where considered; one of the metrics consists
of measuring at every pixel the angular error (AE) between
the obtained result (RGBoi,j) and the corresponding ground
truth value (RGBgi,j). AE is included since this measure is
quite similar to the human visual perception system, [26]—
AE is probably the most widely used performance measure
in color constancy research. Additionally, the Mean Squared
Error (MSE), the Quality Index (QIndex) and the Structural
Similarity (SSIM) metrics are also considered in this quanti-
tative evaluation. On the contrary to AE and MSE, which can
be considered as pixel level evaluation metrics, the SSIM and
QIndex are methods for evaluating the perceived quality of the
results. With the metrics mentioned above combinations of the
different loss functions are evaluated, results are provided in
Table I. It can be appreciated that in all the cases the results
obtained with the final loss proposed with dense Stacked

Conditional GAN are better than those obtained with the
approach presented in [5]. In addition, these losses, being
perfectly differentiable, allow for a better optimization of the
network, thus accelerating the convergence process. Just as
illustrations, few RGB images from Light Haze and Dense
Haze categories, generated with the proposed Stacked GAN
network, are depicted in Fig. 3 for qualitative evaluation.

V. CONCLUSION

This paper tackles the challenging problem of generating
clear RGB representations from hazed and their corresponding
NIR images by using a novel dense stacked cross-spectral con-
ditional generative adversarial network. Results have shown
that in most of the cases the network is able to obtain reliable
clear RGB representations. As mentioned in the discussion
section, this approach has as a limitation the need of having
ground truth images without haze for training, as future work,
actually, as work in progress we have proposed the usage of
a cycle GAN architecture, but feed it with RGB hazed and
their corresponding NIR image in the generator to speed up
the generalization. Future work will also consider other loss
functions to improve the training process.
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TABLE I
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[25] J. Lüthen, J. Wörmann, M. Kleinsteuber, and J. Steurer, “A rgb/nir data
set for evaluating dehazing algorithms,” Electronic Imaging, vol. 2017,
no. 12, pp. 79–87, 2017.

[26] A. Gijsenij, T. Gevers, and M. P. Lucassen, “A perceptual comparison
of distance measures for color constancy algorithms,” in European
Conference on Computer Vision. Springer, 2008, pp. 208–221.


