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ABSTRACT

This paper presents a novel unsupervised approach to esti-
mate the Normalized Difference Vegetation Index (NDVI).
The NDVI is obtained as the ratio between information from
the visible and near infrared spectral bands; in the current
work, the NDVI is estimated just from an image of the vis-
ible spectrum through a Cyclic Generative Adversarial Net-
work (CyclicGAN). This unsupervised architecture learns to
estimate the NDVI index by means of an image translation
between the red channel of a given RGB image and the NDVI
unpaired index’s image. The translation is obtained by means
of a ResNET architecture and a multiple loss function. Exper-
imental results obtained with this unsupervised scheme show
the validity of the implemented model. Additionally, compar-
isons with the state of the art approaches are provided show-
ing improvements with the proposed approach.

Index Terms— CyclicGAN, NDVI, near infrared spectra,
instance normalization

1. INTRODUCTION

Computer vision is a technology that, combined with ma-
chine learning and remote sensing, allows computers to un-
derstand and estimate the quantity, quality, and condition of
crops. These estimations can be made based on the intensity
of radiation reflected by certain bands of the electromagnetic
spectrum. Nowadays, the usage of unmanned aerial vehi-
cles, which can incorporate sensors sensitive to near infrared
(NIR), in addition to the visible, are considered to simultane-
ously acquire images of the same scene in different spectra.
With such cross-spectral information more efficient solutions
can be implemented to help farmers with their crops to apply
more efficient growth methods, increase yields and profits, [1]
[2]. Whereby, the agricultural industry has adopted the use
of these new technologies to automate all activities related to
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improve yields productivity, decrease rising labor costs and
prepare farmers to be ready to face increasingly aggressive
globalized competition.

A vegetation index is a single value that quantifies vege-
tation biomass and/or plants health for each pixel in a remote
sensing image. Among the different indexes proposed in the
literature, the NDVI is the most widely used [3]; This vege-
tation index is often used to monitor drought, forecast agri-
cultural production, assist in forecasting fire zones and desert
offensive maps [4]. This index is calculated as the ratio be-
tween the difference and sum of the reflectance in NIR and
red regions:

Rnir — RRrep
NvDI RNir + Rrep’ )
where Ryir is the reflectance of NIR radiation and Rggp is
the reflectance of visible red radiation.

This index defines values from -1.0 to 1.0, basically rep-
resenting greens, where negative values are mainly formed
from clouds, water and snow, and values close to zero are pri-
marily formed from rocks and bare soil. Very small values
(0.1 or less) of the NDVI function correspond to empty areas
of rocks, sand, or snow. Moderate values (from 0.2 to 0.3)
represent shrubs and meadows, while large values (from 0.6
to 0.8) indicate temperate and tropical forests [5], [6].

Although NDVT has been largely used in the agricultural
sector, its main limitation is related with the need of having
two cameras, one in the visible and one in the NIR spectral
bands. This requirement becomes a drawback if we consider
these cameras have to be on-board a UAV or satellite—i.e.,
power consumption of the cameras and weight of the whole
system. Hence, trying to tackle this drawback, this work pro-
poses the NDVI estimation just by using images from the vis-
ible spectrum (the red channel). In the proposed approach, an
unsupervised learning model with a set of unpaired images is
used as an input, one from the visible spectrum and the other
corresponds to an NDVI image. The manuscript is organized
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as follows. The proposed approach is detailed in Section 2.
Experimental results with a set of real images are presented
in Section 3. Finally, the conclusions are given in Section 4.

2. PROPOSED APPROACH

The architecture used in the current work is based on the one
presented on [7], a previous work that presents an unpaired
image to image translation, through a cycle generative adver-
sarial network (CyclicGAN). This type of network allows do-
main style transfer, which is a convenient method for image-
to-image translation because it is not necessary to have a set
of input images that capture the scene at the same time and
place from different spectra. Before presenting the proposed
approach, a brief description of CyclicGAN is given.

2.1. Cyclic Generative Adversarial Networks

Image-to-image translation is the process of transforming an
image from one domain to another, where the goal is to learn
the mapping between an input and an output image. This
task has been generally performed by using a training set of
aligned image pairs. However, for many tasks, paired train-
ing data are not available, and to prepare them often takes a
lot of work from experts to obtain thousands of paired im-
age datasets, especially with complex image translations [7].
CyclicGAN is an architecture to address this problem because
it learns to perform image translations without explicit pairs
of images. In our case, we use a translation of unpaired im-
ages. Thus, the goal is to learn a mapping G : X — Y such
that the distribution of images from G(X) is indistinguish-
able from the distribution of Y using an adversarial loss, [8].
Because this mapping is highly under-constrained, it is nec-
essary an inverse mapping F : Y — X and introduce a cycle
consistency loss to enforce F/(G(X)) ~ X (and vice versa).

2.2. Instance Normalization

GAN:Ss are a framework in which two networks compete with
each other, with the objective of obtaining that the training
process between the generator G and discriminator D finds
an equilibrium—the Nash equilibrium [9], [8]. Much of the
recent work on GANSs is focused on developing techniques to
stabilize training. To improve the stability during the GAN’s
traning phase, one kind of analysis has emerged around the
style of an image evaluated by the statistics of convolutional
neural network filters, a renewed interest in the texture gener-
ation, and image stylization problems in order to obtain qual-
itative improvement in the generated image.

Ulyanov et al. [10] shows that it is possible to train a gen-
erator network G(s, z) that can apply to a given input image
s the style of another s0. They introduce a method named in-
stance normalization for a better stylization and texture syn-
thesis, which derive entropy loss that improves samples diver-

sity. According to [10], the generator network should discard
contrast information in the content image to learn a highly
nonlinear contrast normalization function as a combination of
such layers. Let s € RNC¢WH be an input tensor containing a
batch of N images, where C, W and H are the depth, width
and high respectively of the image tensor and let s;;;3 denote
the tijk-th element of s image tensor, where k and j span spa-
tial dimensions, ¢ is the index of the image in the batch and
¢ is the feature channel (in the case of a RGB image being
used as an input, it would represent a color channel). Thus, a
simple version of instance normalization is defined as:

Stijk

W —H :
D=1 D21 Stilm

2

Ytijk =

2.3. Proposed Architecture

Our work focuses on the estimation of the NDVI vegetation
index using the red channel of RGB images. The proposed
model can learn to translate the images between the red chan-
nel to their corresponding NDVI indexes, using an unpair
dataset. This allows us to transform from RGB to NDVI. For
simplicity, NDVI indexes are represented as image values so
herein after the terms NDVI indexes and NDVI images will be
indistinctly used. Another advantage of the proposed network
to generate the synthetic NDVI images is that, undoubtedly,
the costs of agricultural solutions may decrease, since there
would be no need to acquire sensors sensitive to NIR spec-
tra together with all the cost associated with the synchronized
image acquisition and registration.

Our architecture uses a modified residual block from
(ResNET) [11] to perform the image transformation from one
spectrum to vegetation index. In order to avoid the vanishing
gradient problem, we define the residual function using F'(x)
= H(x) — =, which can be reframed into H (z) = F'(z) + z,
where F'(z) and z represents the stacked non-linear layers
and the identity function (input=output) respectively. With
this architecture design, it is easier to optimize the residual
mapping than to optimize the original, unreferenced map-
ping. Additionally, we introduce instance normalization, to
the original residual block to improve the quality of the NDVI
image obtained by the network.

Figure 1 depicts the CyclicGAN model proposed in the
current work. It is composed of two generators (G, F') and
two discriminators (Dz, Dy). In order to generate a syn-
thetic NDVI vegetation index, the architecture takes the ad-
vantage from the joint of cycle-consistency and least square
losses [12] in addition to the usual discriminator and gener-
ator losses. The experimental results have shown that these
loss functions demand that the model maintains textural infor-
mation of the visible (corresponding red channel) and NDVI
images and generate uniform synthetic outputs. According
with [7] the objective of a CyclicGAN is to learn mapping
functions between two domains X and Y given training sam-
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Fig. 1. Cycle generative adversarial model: F:Y (NDVI) — X(red channel) and its discriminator D, and G: X(red channel)

— Y/(NDVI) and its discriminator D,,.

ples z;¥, € X and y;I; € Y. The loss functions applied to
the model are detailed below.

2.4. Loss Functions

The adversarial losses, according to [8], are applied to both
mapping functions. For the mapping function G : X — Y
and its discriminator D, and vice versa. Also, according to
[7], for each image x from domain X, the image translation
cycle should be able to bring = back to the original image,
ie., z — G(z) —» F(G(x)) ~ x and vice versa, calling this
forward cycle consistency. To solve the problem of disappear-
ing gradients, we have implemented a least squares GAN loss
function (LSGAN), which is briefly detailed below.

Least squares GAN’s loss

Generative Adversarial Networks [8] have demonstrated im-
pressive performance for unsupervised learning tasks. GANs
do not require any approximation and can be trained end-to-
end through the differentiable networks. Regular GANs adopt
the sigmoid cross entropy loss function for the discriminator
[12]. This loss generate samples that are closer to real data,
in our case the synthetic NDVI image. The experiments per-
formed with this loss instead of negative log likelihood shown
better results and replaced the adversarial losses presented by
[8]. The least square losses are defined as :

Lrsaan(Gp,) = Ey~p daa(,)[(Dy (y) — 1)%] + 3)
E, ~p data(,) [DY(G(:E))ZL

and

Lrscan(Fp,) =Eo~p qaa()[(Dx (@) — 1)%] + )
Ey ~p daa(,) [(Dx (F(y))?)].

For this unsupervised approach, the standard CYCLE-
GAN Lcoycerg: (cycle-consistent loss) and Lrsgan: (least
square loss), have been implemented, both with their corre-
sponding weights distributions for the multiple loss function.
For the first loss, the weighted sum of the individual loss
function terms designed to obtain the best results, is defined
as:

LREDcy —aany =0.38 Loan +0.62 Loyere  (5)

The second loss evaluated in this approach is the LSGAN
loss, where the weighted sum of the individual loss function
terms is defined as:

LREDoy _1sean = 0.65 Lrsgan +0.35 Loyere  (6)

The combination of the weights associated with each loss
function is focused on improving the quality of the images
for human perception and at the same time, they are used as
regularization terms that determine which loss function is the
most significant in the optimization of the model.

3. RESULTS AND DISCUSSIONS

3.1. Datasets for training and testing

The proposed approach has been evaluated using the red
channel of RGB images and their corresponding NVDI veg-
etation indexes from [15]. From the aforementioned data
set the country, mountain and field categories have been
considered for evaluating the performance of the proposed
approach. This dataset consists of 477 registered images
categorized in 9 groups captured in visible and near infrared
spectrum. For each image the NDVI index is computed from
the red channel, together with the corresponding NIR image.
This couple of images (i.e., NDVI index and red channel) are
used unpaired during the training stage.
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Training RMSE SSIM
country field mountain country field mountain
Results from [13] 3.53 3.70 - 0.94 0.91 -
Results from [7] 3.46 3.53 3.82 0.93 0.90 0.88
Results from [14] 3.39 3.56 3.81 0.94 0.92 0.89
NDVI estimation with LRED ¢y _ aan 3.37 3.50 3.72 0.94 0.92 0.90
NDVI estimation with LRED .y 1scan 3.15 3.11 3.20 0.94 0.92 0.91

Table 1: Average Root Mean Square Errors (RMSE) and Structural Similarities (SSIM) obtained from the estimated NDVI
vegetation index and the real one computed from eq. (1) (SSIM the bigger the better). Note NDVI values are scaled up to a
range of [0-255] since they are depicted as images as shown in Fig. 2.

mm‘mm‘
2 A - - N
"

Fig. 2. Images of NDVI vegetation indexes obtained with the
proposed CycleGAN: (/st col) NDVI estimated with [7]; (2nd
col) NDVI estimated by the proposed CyclicGAN; (3rd col)
NDVI estimated by the proposed CyclicGAN with LSGAN;
(4th col) Ground truth NDVI vegetation index. Images from
[15], mountain category.

3.2. Evaluation Metrics

Digital images resulting from an artificial intelligence pro-
cess, such as deep neural networks, are subject to a wide
variety of distortions. In an image-based technique, image
quality is a prime criterion. Commonly, for a good image
quality evaluation, a complete reference metrics is applied,
like Mean Square Error, one of the most used image qual-
ity metrics. Also a perceptual metric that measures image
quality level, Structured Similarity Indexing Method [16], has
been developed to compare the structural and feature similar-
ity measures between restored and original objects. For our
approach, we use RMSE and SSIM metrics, with which we
are able to obtain consistent and better results.

3.3. Experimental Results

Results from the Cyclic Generative Adversarial Network
(synthetic NDVI images) are presented in Figure 2, Where
the illustrations of the estimation of the vegetation indices

obtained are shown. Quantitative evaluations are presented in
Table 1. In this table average root mean square errors of the
NDVI values, scaled up to a range of [0-255], and structural
similarity index metric computed over the validation set are
depicted, when different combinations of the proposed loss
functions are considered. We implement the least square loss
to accelerate and maintain stable the training process. Addi-
tionally, in this Table, results from Conditional GAN ([13]
and [14]) and standard CyclicGAN [7] are presented. It can
be appreciated that in all the cases the results obtained with
the least square loss in the proposed CyclicGAN are better
than those obtained with the other approaches. To increase
the cyclic loss effect over the network we use L1 (A\). The
network has been trained using Stochastic AdamOptimazer.
The image dataset is normalized in a (-1,1) range.

4. CONCLUSIONS

This paper proposes a novel architecture to estimate the NDVI
vegetation index using a Cycle-Consistent Adversarial Net-
work, in order to avoid the dependence on NIR sensors. This
novel approach tackles the challenging problem of synthetiz-
ing NDVI images from a single channel (red) of a RGB rep-
resentation. Experimental results have shown that the NDVI
images estimated with our approach are better than those ob-
tained with the standard CyclicGAN model. The quantitative
values presented also shows better results than previous ap-
proaches for NDVI index estimation.
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