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Abstract—The ability to compare image regions (patches) has
been the basis of many approaches to core computer vision
problems, including object, texture and scene categorization.
Hence, developing representations for image patches have been
of interest in several works. The current work focuses on
learning similarity between cross-spectral image patches with
a 2 channel convolutional neural network (CNN) model. The
proposed approach is an adaptation of a previous work, trying
to obtain similar results than the state of the art but with a low-
cost hardware. Hence, obtained results are compared with both
classical approaches, showing improvements, and a state of the
art CNN based approach.

I. INTRODUCTION

Computer vision tackles problems related with object detec-
tion and recognition, texture classification, action recognition,
segmentation, tracking, data retrieval, image alignment, etc.
There are several techniques for performing these tasks, and
usually based on representing an image using some global or
local image properties, and comparing them using some simi-
larity measure. Learning visual similarities has been presented
recently with success working on images in the mono-spectral
domain [1]. Images are often represented by compact region
descriptors with interest points. The main idea is to extract
all possible patches no matter overlapping, these patches are
usually very small comparing with the original size of the
image, with them we proceed with their processing to exploit
interrelation between them [2].

During last decades different approaches have been pro-
posed to generate feature descriptors (e.g., SIFT [3], SURF
[4], KAZE [5], just to mention a few), those had a great
impact on computer vision area. Many researchers have been
working with image patches for processing spatial like prior
for road detection and urban understanding, which can be
used for image labeling [6]; other approaches have been
proposed based on image-adaptive wavelet transform, which
are tailored to sparsely represent a given image, to form
a multiscale sparsifying global transform for the image in
question [6]. There are some others methods based on image
patch processing like a fast patch dictionary for image recovery
and sparsity-based image denoising via dictionary learning and

structural clustering [7], non-local means methods for image
denoising [8] and image processing using smooth ordering of
its patches [9].

All the approaches mentioned above have been initially
proposed for working with patches obtained from similar
images; generally images of the visible spectrum, in other
words monospectral approaches. These days, the coexistence
of cameras working at different spectral bands has increased
considerably, mainly based on recent advances in imaging
devices as well as the reduction on the prices of such a
technology. This cross-spectral information helps to solve
classical problems in poor lighting conditions or enhance
visible spectrum images with information from other spectral
bands (e.g., filtering [10], enhancement [11]). The current
work is focussed on the usage of images from the visible
spectrum (RGB images) together with images from the near
infrared spectra (NIR images).

The usage of cross-spectral information, although inter-
esting and appealing, implies new challenging and difficult
problems that need to be tackled and efficiently solved. For
instance, different works have been recently proposed for de-
scribing and matching feature points in cross-spectral domains
based on classical approaches (e.g., [12], [13], [14], [15], to
mention a few). Unfortunately, due to the natural difference
between images acquired from different spectra, the obtained
performance is far away from the one obtained in monospectral
scenarios.

In order to overcome the aforementioned poor performance
some recent approaches, based on the usage of Convolutional
Neural Networks (CNNs), have been proposed with interesting
results. Some times such good results are obtained using
expensive dedicated GPUs. In the current work we propose
to use the CNN architecture presented in [16], but modifying
the number of layers and reducing both the size of patches
and convolution kernels, in order to use it in a low-cost
hardware (about ten times cheaper than the one used in [16]).
This network consists of a unified architecture that jointly
learns a 2 channel deep neural network for cross-spectral
patch representation (see Fig. 1). As mentioned above, the
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Fig. 1. 2 channel network model implemented on the current work to obtain
automatic cross-spectral matchings.

main contribution of current work is to reach a performance
similar to [16] but with a low-cost hardware. The rest of the
paper is organized as follows. Section II describes the most
recent work on CNN image patch similarity learning. Section
III presents the adapted CNN architecture detailing the design
and training with cross-spectral datasets. Section IV depicts
the experimental results and finally, conclusion are presented
in section V.

II. RELATED WORK

Image patch’s relevant representations and the correspond-
ing similarity measures can vary significantly. Images are
often represented using dense pixel-based properties or by
compact region descriptors (features) often used with interest
point detectors. Dense properties include raw pixel intensity
or color values from image patches. There are other tech-
niques like common compact region descriptors that include
distribution based descriptors (e.g., SIFT, SURF), differential
descriptors (e.g., local derivatives), shape-based descriptors
using extracted edges (e.g., shape context) and others. For
a comprehensive comparison of local descriptors for image
matching see [17].

Although these representations and their corresponding sim-
ilarity measures may vary significantly, they all share the same
basic assumption, that there exists a common underlying visual
property (e.g., pixels colors, intensities, edges, gradients or
other filter responses), which is shared by the two image
patches, and can therefore be extracted and compared across

images/sequences see [18]. The comparison between the rep-
resentations, using the aforementioned similarity measures,
can be embedded into learning methods, which are able to
find the non-linear relationship between the representations.
These learning based approaches generally rely on some easy-
to-compute distance metric (e.g., Hinge distance) that some
times correlates with the semantic similarity. Different learning
approaches have been proposed in the literature. Recently,
Convolutional Neural Network based learning techniques are
among the best option producing appealing results (e.g., see
[19].

Convolutional Neural Networks (CNNs), are becoming the
dominant tool to tackle most of computer vision problems.
CNNs are a specific type of neural network widely used in
deep learning algorithms. Their convolutional kernel based
philosophy makes them easy to apply in the computer vision
domain for classical problems. One of them is the extraction of
interesting parts of an image, obtaining feature vectors needed
for task like object detection, classification, segmentation, etc.
Those techniques do not ignore the structure and composi-
tional nature of images, so they can learn to extract features
directly from raw images, eliminating the need of manual
feature extraction.

Inspired on the network structure presented for stereo
matching in [20], the authors of [16] proposes a novel ap-
proach for learning cross-spectral similarity measures. This
approach avoids defining a hand-made descriptor being the
CNN responsible for jointly learning the representation and
the measurement. This approach will be referred in current
work as 2 channel network (2ChNet). Patch matching has also
been addressed in [21]; in this case, the authors propose a
generalization of the siamese networks in order to speed up the
matching process. The architecture of the network consists of
two parts, firstly a network is used for describing the patches,
then another network is proposed for the matching (metric
network). Following the siamese architecture, [22] proposes to
train a siamese network that compares the similarity between
image patches just using L2 distance. This simple matching
speeds up the whole process since it is possible to use fast
approximate nearest neighbours algorithms to find the corre-
spondences and thus improve the overall matching runtime. A
comparative study between 2 channel and siamese architecture
has been performed in [16]. It is shown that the 2ChNet has a
considerably better performance in the cross-spectral domain.

Based on the results mentioned above, in the current work a
2ChNet is adapted to be used with a low-cost hardware. The
adaptation consists of reducing the number of layers in the
network. The objective is to obtain a similar performance to
the one obtained by [16], which is considerably better to those
approaches based on hand-made descriptors (e.g., [13], [14],
[15]).

III. NETWORK ARCHITECTURE

As mentioned above the current work is focused on find-
ing correspondences between images from visible and near
infrared spectra. The network architecture selected to find
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Fig. 2. Cross-spectral pairs of images obtained from [2]: (a) visible images;
(b) NIR images.

correspondences between patches from these images is similar
to the one presented in [16], the 2 channel network (2ChNet)
model. Figure 1 shows an illustration of the model. The
adaptation proposed to the 2ChNet architecture is presented
in Fig. 3; this architecture contains less layers than [16]
in order to train it with a low-cost hardware. As can be
appreciated in this illustration, this architecture takes as input
a pair of patches (one from each spectra), and then a series of
convolution, ReLu and max-pooling layers are applied till the
final linear layer that works as the metric network. Note that
the patch from the visible spectrum (RGB image) is converted
to gray scale.

The network learns the similarity by combining information
from both spectra and jointly processing them through the
different layers. This way of processing the information has
been shown as the best solution in cross-spectral domains [16].
The training process do not rely on labels assigned to each
patch, but rather on pairs of patches of different spectra with
similarity or non-similarity. During the training we minimize
the loss with a fully connected layer, before the loss linear
layer.

The 2ChNet architecture takes as an input two patches, one
from each spectra. The size of the patches is 64×64; the
model consists of different layers, like convolution, ReLU,
max-pooling and a final linear layer that computes the loss
of each iteration of the learning process. This last layer acts
as a metric, which permits to determine whether the pair
of patches have or not correspondence. Figure 3 shows the
adapted architecture of the model.

The network architecture described above was trained in
a supervised way; each layer convolves the output of the
previous one, with a filter learned at each operation. Some
layers permit to change the spatial size of the output, obtaining
the maximum or an average value of a previous convolution
layers, or the corresponding activation function . The last
layers are fully connected and multiply the output obtained
with a matrix of learned parameters followed again by a non-

linear activation function (ReLU). We use a margin criterion
based on a hinge loss and squared l2-norm regularization term
as in [1]:

min
w

λ

2
||w||2 +

N∑
i=1

max(0, 1− yioneti ), (1)

where w is the network weight, oneti is the training output for
the i− th training sample iteration and y is the i− th training
label; the value domain is -1,1 for a false and true similarity
respectively, and λ denote the weight decay.

IV. EXPERIMENTS RESULTS

In order to test the proposed approach the cross-spectral
data set from from [2] has been used (a couple of pairs are
presented in Fig. 2). This dataset consists of 477 registered
images categorized in 9 groups captured in RGB (Visible
Spectrum) and NIR (Near Infrared). In order to compare with
the previous approach [16] just images from the category
”Country” have been used for training (150 pairs of images
randomly selected). These images are the most affected in
conditions of varying lighting and textures, which directly
affects the variability and complexity of the detection of the
feature points and therefore are the most challenging scenarios
for the training process. Feature points have been obtained
from SIFT, applied over the visible spectrum images. Patches
of 64×64 pixels have been generated centered on those points.
Then, points placed at the same position than those obtained
by SIFT algorithm are placed in the NIR images and the
corresponding patches with the same size extracted. With this
process 150.000 patches have been generated from ”Country”
category (dataset with correctly matched pairs); the same
amount of patches have been generated for the false pair
dataset.

The model is trained using Stochastic Gradient Descent
with a weight decay (λ) of 0.0007, a learning rate of 0.05,
a momentum of 0.9 and batches size of 80 samples. All input
patches were normalized by its intensity mean, previous to
normalization the values of intensities must be in the {0,1}
range. (80%) of the data set generated as mentioned above
has been used for training, while 20% used for validation.
We use MatconvNet toolbox for Matlab that implements
Convolutional Neural Networks [23]. The 2ChNet model was
trained during 6 days, on a 3.2 eight core processor with 4Gb
of memory with a NVIDIA GeForce GTX970 GPU.

Once the 2ChNet has been trained with images from the
”Country” category it has been evaluated with other cross-
spectral images from the ”Country” category together with
other categories. Thus, 300 pairs from each of the following
categories have been selected: ”Country”, ”Indoor”, ”Olbuild-
ing” and ”Urban” respectively. The results obtained from this
evaluation were compared with those obtained with a classical
feature descriptor (SIFT) to highlight the improvements in per-
formance reached with the proposed approach. The FPR95%
rate, which is the ratio between the number of negative coin-
cidences wrongly categorized as positive (false positives) and



Descriptor-Network Country Indoor Oldbuilding Urban

SIFT [3] 46.6 12.4 21.3 13.27
2ch Network (from [16]) 0.23 4.4 2.3 1.58
2ch Network (Proposed) 0.27 3.3 3.4 4.6

TABLE I
EVALUATIONS (FPR95%) ON VISIBLE-NIR PATCH DATASETS [2] FROM DIFFERENT CATEGORIES (THE SMALLER THE BETTER, BOLD FACES

CORRESPOND TO THE BEST RESULTS IN THAT CATEGORY).
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Fig. 3. Layer architecture of the 2ChNet adapted in the current work (note that both inputs are converted to gray level representations).

the total number of actual negative coincidences (regardless
of classification), is used to measures the obtained results.
Additionally, these values have been compared with the ones
presented in [16]. It can be used to evaluate results from the
same categories, Table 1 shows the obtained performances. As
expected, it can be appreciated the large improvements reached
with respect to SIFT. Additionally, it can be appreciated that
in spite of the hardware limitations, the results are similar to
the one presented in [16], actually, in one case the result is
even better than the ones obtained in [16].

V. CONCLUSION

This paper tackles the challenging problem of cross-spectral
image patch similarity, by adapting a state of the art architec-
ture with a low-cost hardware. The results show that even with
a low-cost hardware the obtained performance is quite similar
to the state of the art, as well as it is shown that outperforms
classical SIFT feature based descriptors. As a future work
other strategies will be considered for improving results, but
always keeping in mind the limitation of hardware.
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