|
Cristhian A. Aguilera, C. A., Cristóbal A. Navarro, & Angel D. Sappa. (2020). Fast CNN Stereo Depth Estimation through Embedded GPU Devices. Sensors 2020, Vol. 2020-June(11), pp. 1–13.
Abstract: Current CNN-based stereo depth estimation models can barely run under real-time
constraints on embedded graphic processing unit (GPU) devices. Moreover, state-of-the-art
evaluations usually do not consider model optimization techniques, being that it is unknown what is
the current potential on embedded GPU devices. In this work, we evaluate two state-of-the-art models
on three different embedded GPU devices, with and without optimization methods, presenting
performance results that illustrate the actual capabilities of embedded GPU devices for stereo depth
estimation. More importantly, based on our evaluation, we propose the use of a U-Net like architecture
for postprocessing the cost-volume, instead of a typical sequence of 3D convolutions, drastically
augmenting the runtime speed of current models. In our experiments, we achieve real-time inference
speed, in the range of 5–32 ms, for 1216 368 input stereo images on the Jetson TX2, Jetson Xavier,
and Jetson Nano embedded devices.
|
|
|
Ángel Morera, Á. S., A. Belén Moreno, Angel D. Sappa, & José F. Vélez. (2020). SSD vs. YOLO for Detection of Outdoor Urban Advertising Panels under Multiple Variabilities. In Sensors, Vol. 2020-August(16), pp. 1–23.
Abstract: This work compares Single Shot MultiBox Detector (SSD) and You Only Look Once (YOLO)
deep neural networks for the outdoor advertisement panel detection problem by handling multiple
and combined variabilities in the scenes. Publicity panel detection in images oers important
advantages both in the real world as well as in the virtual one. For example, applications like Google
Street View can be used for Internet publicity and when detecting these ads panels in images, it could
be possible to replace the publicity appearing inside the panels by another from a funding company.
In our experiments, both SSD and YOLO detectors have produced acceptable results under variable
sizes of panels, illumination conditions, viewing perspectives, partial occlusion of panels, complex
background and multiple panels in scenes. Due to the diculty of finding annotated images for the
considered problem, we created our own dataset for conducting the experiments. The major strength
of the SSD model was the almost elimination of False Positive (FP) cases, situation that is preferable
when the publicity contained inside the panel is analyzed after detecting them. On the other side,
YOLO produced better panel localization results detecting a higher number of True Positive (TP)
panels with a higher accuracy. Finally, a comparison of the two analyzed object detection models
with dierent types of semantic segmentation networks and using the same evaluation metrics is
also included.
|
|
|
Roberto Jacome Galarza. (2022). Multimodal deep learning for crop yield prediction. In Doctoral Symposium on Information and Communication Technologies –DSICT 2022. Octubre 12-14. (Vol. 1647, pp. 106 – 117).
|
|
|
Velez R., P. A., Silva S., Paillacho D., and Paillacho J. (2022). Implementation of a UVC lights disinfection system for a diferential robot applying security methods in indoor. In Communications in Computer and Information Science, International Conference on Applied Technologies (ICAT 2021), octubre 27-29 (Vol. 1535, pp. 319–331).
|
|
|
Rivadeneira, R. E., & Sappa, A. D. and V. B. X. (2022). Thermal Image Super-Resolution: A Novel Unsupervised Approach. In Communications in Computer and Information Science, 15th International Communications in Computer and Information Science Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (Vol. 1474 CCIS, pp 495 – 506).
|
|
|
Miguel A. Murillo, J. E. A., & Miguel Realpe. (2021). Beyond visual and radio line of sight UAVs monitoring system through open software in a simulated environment. In The 2nd International Conference on Applied Technologies (ICAT 2020), diciembre 2-4. Communications in Computer and Information Science (Vol. 1388, pp. 629–642).
Abstract: The problem of loss of line of sight when operating drones has be-come a reality with adverse effects for professional and amateur drone opera-tors, since it brings technical problems such as loss of data collected by the de-vice in one or more instants of time during the flight and even misunderstand-ings of legal nature when the drone flies over prohibited or private places. This paper describes the implementation of a drone monitoring system using the In-ternet as a long-range communication network in order to avoid the problem of loss of communication between the ground station and the device. For this, a simulated environment is used through an appropriate open software tool. The operation of the system is based on a client that makes requests to a server, the latter in turn communicates with several servers, each of which has a drone connected to it. In the proposed system when a drone is ready to start a flight, its server informs the main server of the system, which in turn gives feedback to the client informing it that the device is ready to carry out the flight; this way customers can send a mission to the device and keep track of its progress in real time on the screen of their web application.
|
|
|
Steven Silva, D. P., David Soque, María Guerra & Jonathan Paillacho. (2021). Autonomous Intelligent Navigation For Mobile Robots In Closed Environments. In The 2nd International Conference on Applied Technologies (ICAT 2020), diciembre 2-4. Communications in Computer and Information Science (Vol. 1388, pp. 391–402).
|
|
|
Luis C. Herrera, L. del R. L., Nayeth I. Solorzano, Jonathan S. Paillacho & Dennys Paillacho. (2021). Metrics Design of Usability and Behavior Analysis of a Human-Robot-Game Platform. In The 2nd International Conference on Applied Technologies (ICAT 2020), diciembre 2-4. Communication in Computer and Information Science (Vol. 1388, pp. 164–178).
|
|
|
Dennys Paillacho, Nayeth I. Solorzano Alcivar, & Jonathan S. Paillacho Corredores. (2021). LOLY 1.0: A Proposed Human-Robot-Game Platform Architecture for the Engagement of Children with Autism in the Learning Process. In The international Conference on Systems and Information Sciences (ICCIS 2020), julio 27-29. Advances in Intelligent Systems and Computing. (Vol. 1273, pp. 225–238).
|
|
|
Juca Aulestia M., L. J. M., Guaman Quinche J., Coronel Romero E., Chamba Eras L., & Roberto Jacome Galarza. (2020). Open innovation at university: a systematic literature review. Advances in Intelligent Systems and Computing, 1159 AISC, 2020, 3–14.
|
|