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Abstract

This paper presents the results of two tracks from the
fourth Thermal Image Super-Resolution (TISR) challenge,
held at the Perception Beyond the Visible Spectrum (PBVS)
2023 workshop. Track-1 uses the same thermal image
dataset as previous challenges, with 951 training images and
50 validation images at each resolution. In this track, two
evaluations were conducted: the first consists of generating
a SR image from a HR thermal noisy image downsampled by
four, and the second consists of generating a SR image from a
mid-resolution image and compare it with its semi-registered
HR image (acquired with another camera). The results of
Track-1 outperformed those from last year’s challenge. On
the other hand, Track-2 uses a new acquired dataset consist-
ing of 160 registered visible and thermal images of the same
scenario for training and 30 validation images. This year,
more than 150 teams participated in the challenge tracks,
demonstrating the community’s ongoing interest in this topic.

1. Introduction
Image super-resolution (SR) techniques aim to generate

a high-resolution (HR) image from a given low-resolution
(LR) image. Nowadays, most of the approaches in the lit-
erature are deep learning-based solutions, where a down-
sampled HR image is used as input, augmented with noise
and blur, and then used to train the network. While most of
these methods have been applied to the visible spectrum, the
demand for thermal images in various applications requires
techniques that operate in the thermal image domain.

A standard benchmark for evaluating contributions was
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Figure 1. A montage of two thermal images captured from the same
point of view but with different cameras at different resolutions.
The (left) image is a crop from the MR image, while the (right)
image is a crop from the HR image [11].

introduced at the PBVS 2020 workshop through a Thermal
Image Super-Resolution (TISR) challenge. The success of
these challenges led the way for the fourth TISR challenge in
the framework of the PBVS 2023 workshop, which features
two tracks. While Track-1 remains unaltered, Track-2 is
based on a recently acquired cross-spectral sensor dataset.
The dataset includes registered visible and thermal image
pairs captured during daylight conditions of a given scene.

As mentioned above, TISR 2023 challenge1 has two
tracks. Track-1 has two evaluation approaches, like in the
previous year challenge [13]. Evaluation 1 consists in gener-
ating a ×4 SR image from a noise and downsampled image
from the HR camera. Evaluation 2 consists in generating
a ×2 SR image from the MR camera (Axis Q2901-E) to
be compared with its corresponding semi-registered images
obtained from a HR camera (FLIR FC-632O); this second
evaluation must tackle two problems, generating SR images
acquired with a different camera as well as mapping images
from different domains. On the other hand, Track-2 consists
in obtaining super-resolution images at ×8 by using a HR
visible image of the same scenario as a guidance for the LR
thermal image.

The obtained results indicate the growing interest of the

1https://pbvs-workshop.github.io/challenge.html
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Figure 2. Metrics evolution through all challenges (Track-1).

community in the thermal image SR problem, with metric
values increasing each year, as illustrated in Figure 2 for
Track-1. The manuscript is organized as follows. Section 2
provides an introduction to the challenge objectives and
datasets, while Section 2.3 presents a summary of the results
obtained by the different teams. Then, Section 3 offers a
brief description of the top approaches. The conclusion is
presented in Section 4, followed by an appendix containing
information on the teams.

2. TISR 2023 Challenge
The objective of the TISR 2023 challenge is to intro-

duce different approaches for solving the thermal image SR
problem and also compare these solutions using the previ-
ous year’s benchmark. Additionally, this year, a new cross-
spectral dataset is introduced to tackle the guided thermal
images SR problem and foster further research in this field.

2.1. Thermal Image Datasets

The current challenge utilizes two datasets, one for each
track. Track-1 dataset, introduced in [11], is used as in
previous TISR challenges (i.e., [12], [14], [13]). This dataset
contains 1021 thermal images taken with three different
thermal cameras in various lighting conditions, resolution
and scenes. Cameras were positioned on a rig to reduce the
baseline distance between the optical axis, resulting in nearly
registered images. A mosaic made up of images from the
MR and HR cameras is presented in Fig. 1.

On the other hand, Track-2 uses the new acquired dataset,
which contains visible and thermal registered pairs of im-
ages of the same scene taken in daylight conditions. These
images have clear edges and are of good quality, making
them suitable for training. The dataset includes 200 pairs
of images captured using Balser and TAU2 cameras with
different resolutions. The images were registered using the
Elastix [5] algorithm, obtaining pairs of thermal and visible
images with a resolution of 640×480 pixels. The dataset is

split up into training, validation, and testing image pair sets,
with 160, 30, and 10 images, respectively. No noise has been
added to the downsampled images. The HR visible spectrum
images serve as a guidance for the LR thermal image to
generate a super-resolved HR thermal image. Examples of
this dataset can be seen in Fig. 3.

2.2. Evaluation Methodology

The evaluation methodology for Track-1 is the same that
the one used in the PBVS 2022 [13] challenge. All team
contributions are assessed based on the obtained mean values
of peak signal-to-noise ratio (PSNR) and structural similarity
(SSIM) measures. Two types of evaluations are conducted,
as mentioned abve. In the initial process, a set of 10 LR
images obtained from a HR camera are evaluated. Gaussian
noise (σ = 10%) is introduced, and the HR image is then
downsampled by a factor of ×4. Figure 4 (a) provides an
illustration of this first evaluation process.

Another set of 10 SR images obtained by a ×2 scale fac-
tor from the given MR images is evaluated in the second
process. These 10 SR images are evaluated with respect to
the corresponding HR GT images (acquired from a different
camera, with the same resolution as the computed SR). Fea-
ture point-based registration is used to align the images. The
evaluation on PSNR and SSIM is performed on 80% of the
central cropped region of the image. Figure 4 (b) illustrates
this second evaluation process.

The evaluation for Track-2 also uses the mean PSNR and
SSIM metrics obtained on a set of 10 LR images (down-
sampled by a factor of ×8), where no noise has been added.
Figure 5 provides an illustration of this track evaluation
process.

2.3. Challenge Results

The top three results from each participating team for each
track are described below. For Track-1, 28 teams reached
the final testing phase from the 87 initially registered teams.
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Figure 3. Illustrations of the cross-spectral dataset, thermal and visible registered images used in Track-2.
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(b) Second evaluation process on a set of MR to HR images (×2).

Figure 4. Evaluations processes for Track-1.

Table 1 displays the average results (PSNR and SSIM) on
the testing images for each team in the two evaluations. As
it can be seen, this year’s results slightly improved upon the
previous year’s best results, except for the SSIM of Evalua-
tion 1, where none of the teams achieved a better result than
in last year’s competition.

On the other hand, in Track-2, 23 teams reached the
final testing phase, from the 74 initially registered teams.
Table 2 displays the average results (PSNR and SSIM) on the
testing images for each team. The CodaLab Competition [9]
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Figure 5. Illustration of the evaluation process for Track-2 on a set
of LR images downsampled by a factor of ×8 with no added noise.

Team Approach
Track-1

Evaluation 1 Evaluation 2
×4 ×2 (MR to HR)

PSNR SSIM PSNR SSIM
AC 34.35 0.9294 23.95 0.7970
AIR 34.88 0.9279 21.38 0.7812

ANT INS 33.97 0.9276 22.89 0.7932
APTX4869 31.17 0.9178 22.28 0.7893

STAIA 34.96 0.9253 20.24 0.7532
TSR 32.46 0.9296 20.12 0.7493

PBVS 2022 34.42 0.9316 23.00 0.7966

Table 1. Track-1 tops average results for each evaluation of the
2023 TISR challenge (see Section 2.2 for more details). Bold and
underline values correspond to the best- and second-best results,
respectively for each evaluation. PBVS 2022 shows the highest
results obtained for each metric in the previous edition of the chal-
lenge.

webpage (Track-12; Track-23) provides further quantitative

2https://codalab.lisn.upsaclay.fr/competitions/
9649

3https://codalab.lisn.upsaclay.fr/competitions/
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Team Approach
Track-2

×8
PSNR SSIM

AIR 28.74 0.8568
ANT INS 29.41 0.8727

GUIDEDSR 31.04 0.9294
TU-PAC 28.78 0.8582
SwinIR 27.68 0.8098

Table 2. Track-2 top average results of the 2023 TISR challenge
(see Section 2.2 for more details). Bold and underline values cor-
respond to the best- and second-best results. SwinIR results corre-
sponds to a non-guided approach used as a baseline for the com-
parisons; this non-guided approach reached the best results in the
TISR challenge of last year [13].

results that can be analyzed to gain a better understanding of
the competition’s overall performance.

3. Proposed Approaches and Teams

This section presents a brief description of the approaches
proposed by the teams that achieve the highest scores in each
metric of the evaluations for each tracks. Illustrations of the
architectures for the best results are provided. Teams are
alphabetically listed.

3.1. Track-1: AC

In Track-1, for Evaluation 1, the AC team adopts
SwinIR [6] as the backbone. For Evaluation 2, the main
challenge is the unaligned MR-HR pair. One solution is to
align HR with MR. However, MR and HR belong to differ-
ent resolution spaces, and direct alignment between them is
inaccurate. Thus, as illustrated in Fig. 6, the AC team feeds
the 2D coordinate map of MR and HR into a super-resolution
model M1 [19] to generate a coarse super-resolved result ISR

In .
Then, it uses pretrained PWCNet [16] to estimate the optical
flow from HR to ISR

In , generating aligned HR IHR
Warp. Finally,

the AC-Team feeds MR into a super-resolution model M2

and supervises it with IHR
Warp to reconstruct the final super-

resolved result ISR.
It should be noted that the parameters of PWCNet are

fixed. During the inference phase, only M2 is used to re-
cover high-quality images. The AC team adopts the popular
Pytorch and trains the model on two NVIDIA V100 GPUs
(128G RAM memory) for 60 epochs (approximately four
hours). The model is optimized by ADAM with a learning
rate of 5e-4. The quantitative results show that the AC-Team
achieves 34.35 PSNR & 0.9294 SSIM in Evaluation 1 and
best results in Evaluation 2 with 23.95 PSNR & 0.7970
SSIM for Track-1.

9666

The code is available at https://github.com/
wcy-cs/PBVS2023_TISR_Track1

3.2. Track-1: AIR

Recent advances in low-level computer vision research
have shown that Transformer-based networks achieve im-
pressive performance [4]. To address the limitations of con-
ventional Transformer-based networks that use a limited
spatial range of input information, the Hybrid Attention
Transformer (HAT) [2] network has been proposed. The
HAT network combines channel attention and self-attention
schemes to activate more input pixels for reconstruction,
resulting in state-of-the-art performance. Building upon
the HAT network, this team proposes a HAT-variant that
places additional emphasis on spatial information. First, the
proposed approach replaces the existing Residual Channel
Attention Block (RCAB) with a Residual Channel-Spatial At-
tention Block (RCSAB) to preserve spatial information more
effectively. Specifically, the average pooling layer in the
RCAB is removed to maintain the spatial resolution of the
input feature maps. Furthermore, the use of RCSAB does not
significantly increase the computational cost compared to
RCAB, while enabling the creation of more detailed attention
maps. Second, in order to enhance full-resolution training
and increase the batch size, this team reduced the number of
Residual Hybrid Attention Groups (RHAGs) from 6 to 5.

All reported implementations were based on the PyTorch
framework, while the proposed approaches were conducted
using a 16-Core CPU, 2 × V100 GPUs, and 64 GB of RAM
for approximately four days. This team used early stopping
and an initial learning rate of 0.0001 with the RAdam op-
timizer [7]. Additionally, low-quality (LQ) images were
created by applying JPEG compression (quality=95) and
Gaussian noise (σ =

√
10). The proposed network was

trained using full-resolution high-quality (HQ) images from
the challenge training and validation dataset, with a batch
size of 4. All images were augmented with random hori-
zontal and vertical flips. The pixel-wise MSE loss function
was computed for a pair of reconstructed images obtained
from HAT-variant and high-quality (HQ) images. The study
results were quantified using PSNR and SSIM metrics. The
quantitative results show that the AIR team achieves 34.88
PSNR and 0.9279 SSIM on Evaluation 1, and 21.38 PSNR
and 0.7812 SSIM on Evaluation 2 for Track-1.

3.3. Track-1 & 2: ANT INS

Inspired by Channel Split Convolutional Neural Net-
work(ChaSNet) [10] and Swin Transformer [6], ANT INS
team designed a Transformer and Convolution Parallel-based
Super Resolution Network (TCP-SRNet). The Channel Split
Convolutions are designed to extract local features from
images, such as edges, corners, and textures, which are com-
bined in higher layers to form more complex representations
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Figure 6. Architecture proposed by AC team, Track-1.

of objects. The Swin Transformers can capture the relation-
ships between different parts of the image, such as the spatial
arrangement of objects. TCP-SRNet combines both features
to improve the performance of image super-resolution.

For Track-1, in Evaluation 1, TCS-SRNet were trained
with an upscaling factor of ×4 with L1 loss, and the in-
puts are down-sampled with a factor ×4 of the HR images.
In Evaluation 2, the inputs are semi-matched, where TCS-
SRNet were trained with an upscaling factor of ×2 with L1
loss. Secondly, TCS-SRNet were trained with an upscaling
factor of ×2 with L1 loss, Least Squared GAN (LSGAN)
loss [8] and SSIM loss. The average of outputs of these two
models are the final result for these models.

For Track-2, the process enhances image resolution by
splitting LR and HR images into two feature maps, process-
ing them through Transformer and Channel Split Blocks, and
using pixel-shuffle operators to increase spatial resolution.
The HR visible image is also passed through the convolu-
tion layer with a kernel size of 3×3 and 2N channels. The
blocks used are Swin-based and Channel Split Convolutional
Blocks, similar to those in ChaSNet.

The quantitative results show that the ANT INS team
achieves 33.97 PSNR and 0.9276 SSIM in Evaluation 1, and
22.89 PSNR & 0.7932 SSIM in Evaluation 2 for Track-1.
Moreover, in Track-2, the team achieves 29.41 PSNR &
0.8727 SSIM.

3.4. Track-1: ATPX4869

The architecture of the network is based on SwinIR [6],
with window size as 8, and depth of each Swin Transformer
layer as all 6. The number of attention heads of each layer is
set to 6, and patch embedding dimension is 180. SwinIR is
mainly based on attention operations to extract features of
the input image and reconstruct with them. The basic block
for SwinIR is Residual Swin Transformer Block, which
combines the capability of long-term dependency modeling
of self-attention modules and the shift-invariance of con-

volution blocks. This architecture makes SwinIR a strong
baseline for the thermal super-resolution tasks. SwinIR is
used with the same settings for both ×2 and ×4 tasks (only
upscale is changed).

The parameter settings for ×4 task (noisy LR to HR) is
as follows: training loss is weighted sum of L1 loss and
MS-SSIM loss:

losseval1(ŷ, y) = L1Loss(ŷ, y) + λ(1−MSSSIM(ŷ, y))

where λ is set to 0.5 in the experiments. Pretrained model of
SwinIR from the BasicSR [18] was used. Data augmentation
(flip, rotation) is used and cropped to 128×128 (HR patch
size), AdamW optimizer with learning rate 2e-4 is applied
for training. The network is trained for 100k iteration with
batch size 12, with learning rate halved in 60k, 80k and 95k
iterations. In addition, test time augmentation is applied
by taking average of outputs from h-flipped, v-flipped and
original LR images.

For ×2 task (MR to HR), one of the main obstacles for
evaluation 2 task is the misalignment of MR and HR images.
Firstly, the ECC Maximization method [3] is used to align
the MR to downsampled HR images. The network is trained
on the aligned dataset for 50k iterations with batch size 8.
AdamW with learning rate 1e-4 and multistep scheduler
which halves learning rate in 10k and 20k are applied in this
experiment. Loss function is as follows:

losseval2(ŷ, y) = TruncL1Loss(ŷ, y)+w(1−SSIM(ŷ, y))

where TruncL1Loss is a truncated absolute mean error,
which only penalize the error under a certain threshold:

TruncL1Loss(ŷ − y) =

{
thr, ||ŷ − y|| ≥ thr

||ŷ − y||, ||ŷ − y|| < thr

This loss is chosen to tackle with meaningless large errors
caused by possible misaligned pixels. thr is set to 0.05, w
is set to 0.5. Test time augmentation same as ×4 task.
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Python 3.7 and Pytorch 1.10.0 with CUDA 11.3 is used in
the experiments. All trainings are done on 1 Nvidia GeForce
RTX 3090 GPU card (24G) of Ubuntu 18.04 server. The
quantitative results show that the APTX4869 Team achieves
31.17 PSNR & 0.9178 SSIM on Evaluation 1 and 22.28
PSNR & 0.7893 SSIM on Evaluation 2 for Track-1.

The code is available at https://github.com/
jzsherlock4869/TISR_APTX4869

3.5. Track-2: GUIDED SR

This team proposes a model that super-resolves a LR ther-
mal image with a HR RGB image as guidance. Considering
that the RGB and thermal images are captured by different
imaging pipelines, the team proposes a two-stream network
to enhance the LR thermal image. The network architecture
is presented in Fig. 7. Specifically, the team first feeds the
LR and RGB images into a shallow feature extraction layer
to extract shallow features respectively. Then, the extracted
features are concatenated and fed into feature fusion layers
to fuse multi-modal information. The feature fusion layers
are comprised of cascaded NAF Blocks [1]. Finally, the
team adopts an HR image reconstruction layer to reconstruct
the super-resolution result.

The training process has two steps. In the first step, the
network is guided by using L1 loss. In the second step, the
network, pre-trained in the first step, is fine-tuned by adopt-
ing MSE loss. The team conducted experiments on two
NVIDIA 3090 GPUs for two days using the Pytorch frame-
work. The batch-size and patch-size were 8 and 32×32,
respectively. The quantitative results show that the Guid-
edSR team achieves the best results in both metrics, which
are 31.04 PSNR & 0.9036 SSIM for Track-2.

Source code can be found in https://github.com/
zhwzhong/Guided-SR.

3.6. Track-1: STAIA

Considering the impressive results achieved by
Transformer-based deep neural networks in image super-
resolution, the HAT model is used as shown in Fig. 8
following HAT [2]; the model parameters are initialized
using the ImageNet pretrained model. The batch size is
set to 4/gpu, and the high-resolution image block size is
256×256. The original HR image is added with Gaussian
noise and downsampled to a LR image as input, and random
flip and rotation are used as data augmentation strategies.
The model is trained for about 60000 iterations. It was
found that using cubic downsampling in OpenCV can
achieve higher PSNR (SRx4:34.96) on the test set, and using
bicubic downsampling in Pytorch can achieve higher SSIM
(SRx4:0.9284). This team directly uses the model structure
in HAT, for detailed structure, please refer to HAT [2].

This team uses 4 Nvidia Tesla V100 GPUs and 20-core
CPUs to train the neural network model, using the Python

programming language and the Pytorch deep learning frame-
work, and the training time is 1 day and 3 hours. The quan-
titative results show that the team achieves 34.96 PSNR &
0.9253 SSIM on Evaluation 1, and 20.24 PSNR & 0.7532
SSIM on Evaluation 2 for Track-1.

The code is available at https://github.com/
daicver/HAT_TISR

3.7. Track-1: TSR

This team recover the HR thermal image from the given
LR thermal image by first upsampling the LR image by Bicu-
bic interpolation and then feeding the upsampled results into
the network. As shown in Fig. 9, the network consists of
three parts, i.e., shallow feature extraction, feature enhance-
ment and HR image reconstruction. Finally, the output of
the network is added to the upsampled LR image, generat-
ing the super-resolved result. In their model, they employ
the NAFBlock [1] as the basic block due to its powerful
representation ability.

To improve performance, the model is first pre-trained
using ×2 LR-HR pairs and then fine-tuned using ×4 LR-HR
pairs. The team chose L1 loss as their loss function. The
team conducted experiments using the Pytorch framework
on two NVIDIA 3090 GPUs for three days. The batch size
and patch size were set to 8 and 32×32, respectively. The
quantitative results show that the TSR team achieves 32.46
PSNR & 0.9292 SSIM on Evaluation 1 and 20.12 PSNR &
0.7493 SSIM on Evaluation 2 for Track-1.

Source code can be found in https://github.com/
zhwzhong/TSR.

3.8. Track-2: TU-PAC

Guided super-resolution with misaligned images poses
two key challenges: effectively using the guide image to up-
sample the thermal image and avoiding misaligned features
for guidance. To address these issues, this team proposes an
Attention-based Pixel Adaptive Convolution (APAC) layer
based on PACT [15] to upsample thermal images using mis-
aligned guide images. The network is composed of Encoder,
Guide, and Decoder branches. Each APAC block refines the
guide features using Channel and Spatial Attention to sup-
press the impact of misaligned features. The refined guide
features and thermal features are fed to a PACT layer to gen-
erate upsampled thermal features for the next layer. Finally,
the upsampled features are passed through two convolution
layers, and a skip connection adds the bilinear upsampled
input to the model output to generate a sharp thermal image.

In addition to APAC, several modifications are proposed
to improve the baseline efficacy of the model: SSIM loss is
preferred over pixel wise similarity measures such as L1 and
MSE to help the model overcome the pixel level misalign-
ment issue. Training time augmentations such as random
rotation, horizontal, and vertical flips were used to prevent
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Figure 7. Architecture proposed by GUIDEDSR team, Track-2.

Figure 8. Architecture proposed by STAIA team, Track-1.

overfitting on the small dataset. Test time augmentations
introduced in [17] were used to generate final outputs. Ad-
ditionally, a new test time augmentation is introduced: The
guide image is Gaussian blurred by a 3×3 kernel to reduce
the effect of noise in the guide image. This augmentation
improves both PSNR and SSIM. The model is very efficient
with only 1M parameters, trained on a single V100 GPU us-
ing PyTorch. The quantitative results show that the TU-PAC
team achieves 28.78 PSNR & 0.8582 SSIM for Track-2.

4. Conclusion

This paper provides a summary of the techniques pro-
posed by each team that reached to the final validation phase
and submitted their contributions for the Thermal Image
Super-Resolution Challenge - PBVS 2023, where two tracks
were considered. A new cross-spectral dataset is acquired
for Track-2. All the presented approaches are based on deep
learning algorithms, using various CNN architectures. This
event marks the fourth edition of the challenge focused on
thermal image SR, with more participants than in previous
editions (87 teams registered for Track-1 and 74 teams reg-
istered for Track-2). As a general conclusion, the results
for Track-1 indicate that the limit of performance seems to
have been reached. On the other hand, regarding the re-
sults from Track-2, it can be said that guided approaches
improve the baseline results obtained with a non-guided
SwinIR, which was used as a reference when considering
large super-resolution scales (×8). This dataset will be used
as a benchmark in future editions of the challenge. The
challenge provides a valuable platform for researchers to
collaborate and exchange ideas, leading to significant ad-

vancements in the field of thermal image SR.
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