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Abstract

This paper presents the findings and results of the third
edition of the Multi-modal Aerial View Object Classifica-
tion (MAVOC) challenge in a detailed and comprehensive
manner. The challenge consists of two tracks. The pri-
mary aim of both tracks is to encourage research into build-
ing recognition models that utilize both synthetic aperture
radar (SAR) and electro-optical (EO) imagery. Partici-
pating teams are encouraged to develop multi-modal ap-
proaches that incorporate complementary information from
both domains. While the 2021 challenge demonstrated the
feasibility of combining both modalities, the 2022 challenge
expanded on the capability of multi-modal models. The
2023 challenge introduces a refined version of the UNI-
CORN dataset and demonstrates significant improvements
made. The 2023 challenge adopts an updated UNIfied CO-
incident Optical and Radar for recognitioN (UNICORN V2)
dataset and competition format. Two tasks are featured:
SAR classification and SAR + EO classification. In addition
to measuring accuracy of models, we also introduce out-of-
distribution measures to encourage model robustness.

The majority of this paper is dedicated to discussing the
top performing methods and evaluating their performance
on our blind test set. It is worth noting that all of the top
ten teams outperformed the Resnet-50 baseline. The top
team for SAR classification achieved a 173% performance
improvement over the baseline, while the top team for SAR
+ EO classification achieved a 175% improvement.

1. Introduction

The objective of Automatic Target Recognition (ATR)
models is to accurately detect, recognize, classify, and iden-
tify target signatures present in remotely sensed imagery, as
evidenced by various sources such as [3, 6, 7, 16, 17, 20].
ATR is similar to object detection and labeling in natural
imagery; however, ATR systems are often built on complex
remote sensing (RS) systems mounted on aircraft or space-
craft. Hence, there are unique challenges to automatically
detect and labeling aerial images, such as limited sensor
resolution resulting in only a handful of pixels on the tar-
get, as described in [5]. SAR, while researched as a single-
mode ATR, offers benefits such as all-weather, all-time, and
stand-off results; however, it also presents challenges with
signal multi-bounce, shadows, and distinguishing bound-
aries of closely-spaced objects [9]. Combining EO and SAR
for ATR presents many unique research challenges and op-
portunities.

One significant distinction between ATR models and nat-
ural image object detection models is that ATR systems
must be capable of detecting out-of-distribution (OOD)
samples. A model may encounter data outside of the train-
ing set, and high-confidence misclassification can have se-
vere consequences given the applications of ATR systems.
Therefore, ATR models must provide a confidence score (or
credibility [2]) for each label, with low scores indicating
low-confidence [5, 8].

The 2023 PBVS Multi-modal Aerial View Object Clas-
sification (MAVOC) challenge (building on the 2022 chal-
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lenge [15]) provides an excellent opportunity to study the
complex issues associated with EO-SAR image and gain
insights on how to optimize the use of multi-modal infor-
mation in ATR models.

RS systems can benefit from considering multiple sen-
sor types. Each modality may offer a different strength
such as self-illuminated systems can operate without sun-
light or microwave band system can image through clouds
and vegetation. Passive sub-optical sensors can remotely
measure temperature, while active radars can identify man-
made objects in jungles or infer wind speed. Combinations
of passive and active data from RF and EO sensors can en-
hance object detection, user appreciation, and classification
robustness [22]).

Despite their advantages, RS systems are often over-
looked in computer vision applications due to the difficulty
in combining different sensor data in complementary ways
such as signal registration, data scaling, concept alignment,
and feature association. As a result, most RS systems rely
on a single modality, typically visual data composed of mul-
tiple spectrum bands. While extensions like multi-spectral
(MSI) and hyperspectral (HSI) data offer more bands, they
also require determining the salient bands for the targets of
interest and necessitate more computation power than the
EO domain. However, by intelligently fusing various sen-
sor data, ATR performance improvements are expected.

2. Challenge

The 2023 MAVOC challenge is held jointly with the
Perception Beyond the Visible Spectrum (PBVS) workshop
following the 2022 competition and the 2021 workshop held
in conjunction with NTIRE [12]. The MAVOC challenge is
designed to facilitate innovative approaches in multi-modal
classifiers using pairs of SAR and EO images. Participants
are evaluated on the top-1% accuracy and area under the
receiver operating characteristic (AUROC). This is to en-
courage the design of models that excel both at labelling
and detecting out-of-distribution samples.

The SAR images provided pose a unique challenge to
participants due to their self-illuminated and coherent na-
ture, leading to images with distinct SAR shadows and a
tilted perspective. The challenge is bifurcated into two
tracks, each emphasizing multi-modal models with differ-
ing utilities.

2.1. Track 1

The primary objective of Track 1 is to develop a clas-
sifier that can be trained on both SAR and EO data and
tested solely on SAR data. The resulting classifier should
not rely on EO data when deployed, but instead, learn from
the merged features found in both SAR and EO images dur-
ing training. By eliminating the need for both modalities

at test time, decisions can be made faster, as the compu-
tationally expensive rectification preprocessing required to
align SAR and EO is not required. The diverse nature of the
training data from different modalities makes it a challeng-
ing task.

2.2. Track 2

The primary objective of Track 2 is to develop a classi-
fier trained on both SAR and EO data, and tested on (SAR,
EO) image pairs. Training with EO/SAR data allows the
ATR models to utilize features from both modalities during
both training and deployment, potentially resulting in more
accurate classifiers. Compared to Track 1, Track 2 bene-
fits from the additional input information at test time, as EO
images are typically less noisy than SAR images.

2.3. AUROC

The 2023 MAVOC challenge introduces the use of
AUROC to determine a model’s ability to detect out-of-
distribution samples. The AUROC ranges from 0 to 1.
A score of 0.5 corresponds with random guessing, and a
score of 1 corresponds with perfect confidence. Out-of-
distribution (OOD) samples or negative samples are shuf-
fled into the validation and test sets, but not provided dur-
ing training. Moving OOD samples to testing discourages
the use of additional training classes as a catch-all for the
negative samples.

2.4. Dataset

The foundation of the challenge is built upon the UNIfied
COincident Optical and Radar for recognitioN (UNICORN)
dataset [11], which offers a publicly available and aligned
SAR-EO dataset with hand-labeled classes. The 2023
MAVOC challenge utilizes a refined version of the 2008
UNICORN dataset (UNICORN-V2). The UNICORN-V2
dataset consists of Wide Area Motion Imagery (WAMI)
large format electro-optical (EO) sensor [18] and Wide Area
Synthetic Aperture Radar (SAR) data, collected from an air-
craft flown over Dayton, Ohio. This dataset exhibits im-
proved alignment accuracy, and contains an increase in la-
belled images. A baseline pre-trained Resnet-50 model per-
formed similiary between the two version of the UNICORN
dataset scoring between 15-18% accuracy on a held out test
set. We also observed that models and approaches from
the 2022 challenge performed nearly identically on the new
dataset.

While the SAR and EO data cover the same approximate
field of view, the reconstructed SAR image has a finer reso-
lution than the EO image. These large SAR and EO images
are rectified and aligned using homography algorithms, as
depicted in Figure 2. The competition dataset comprises
small windowed sections (chips) that are sub-images of the
aligned large image. Each chip contains one of 10 objects to
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Figure 1. Two sample pairs of EO and SAR chips from each of the 10 classes in the UNICORN Dataset [12].

Figure 2. The aligned scene of the full UNICORN dataset before
chipping is performed [11].

be classified. A typical EO chip is 31 × 31 px and a typical
SAR chip is 55 × 55 px due to the differing resolutions of
the large images. Figure 1 shows examples of (SAR, EO)
pairs from each class of the dataset. The UNICORN-V2
dataset is created using a refined homography and align-
ment process. The alignment enables both more chips to be
identified and more precise. As demonstrated in Table 1,
the dataset is partitioned into train, validation, and test sets,
with the train set classes non-uniformly distributed, follow-
ing a long-tail distribution. However, the validation and test
sets are uniformly distributed across all 10 classes, enabling
a true and unbiased measurement of accuracy.

The out-of-distribution images are pulled from other
classes in the UNICORN-V2 dataset. These are classes with
fewer examples than the flatbed truck w/ trailer class. These
classes are shown in Table 2.

Table 1. Details of the UNICORN-V2 Dataset used as the in-
distribution classes in this challenge (counts represent the number
of (EO, SAR) pairs).

Class # Vehicle Type # Train # Val # Test

0 sedan 364,228 77 200
1 SUV 43,642 77 200
2 pickup truck 24,420 77 200
3 van 17,159 77 200
4 box truck 3,414 77 200
5 motorcycle 2,351 77 200
6 flatbed truck 1,233 77 200
7 bus 1,130 77 200
8 pickup truck w/ trailer 971 77 200
9 flatbed truck w/ trailer 714 77 200

Total 459,262 770 2000

Table 2. Details of the UNICORN-V2 Dataset used as the out-of-
distribution classes in this challenge (counts represent the number
of (EO, SAR) pairs).

Class # Vehicle Type # Train # Val # Test

0 other - 77 1,151
1 sedan w/ trailer - 77 872
2 dismount - 77 609
3 SUV w/ trailer - 77 681
4 plane - 77 432

Total - 770 3,745

2.5. Evaluation

Submissions are evaluated using a weighted average of
the top-1% accuracy and AUROC of the model. The test
set contains 2,000 unlabelled (SAR, EO) chip pairs, with
200 examples for each of the 10 classes, and 3745 out-of-
distribution samples. The weighting is shown in Eq. 1.

Score = 0.75 Accuracy + 0.25 AUROC (1)
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Figure 3. The performance differences between the 2021 NTIRE,
2022 PBVS, and 2023 PBVS MAVOC challenges. This figure
plots the Top-1% accuracy of the ten top performing teams for
SAR classification.

Table 3. Top-10 Teams for Track 1 (SAR).

Rank Team Total ↑ Accuracy ↑ AUROC ↑
1 fcai21 0.65 63.20 0.71
2 Running 0.64 59.20 0.80
3 qingqing 0.61 53.15 0.85
4 Raghunath19 0.61 59.85 0.64
5 papu 0.45 41.40 0.56
6 yangyang6 0.45 45.24 0.44
7 USTC-IAT-United 0.44 34.55 0.71
8 VL 0.42 39.30 0.52
9 hsansui 0.42 34.55 0.66
10 jsyoon 0.41 34.75 0.60

2022 Best (USTC) - 36.44 -

During the testing phase of the competition, teams are al-
lowed up to ten submissions per day. During the evaluation
phase, teams submit their label predictions and confidence
score to be evaluated on the competition server. Teams are
allowed up to six submissions, which prevents teams from
effectively fine-tuning on the test dataset. Results are made
visible during both phases.

2.6. Challenge Phases

The challenge began January 11, 2023, and the test data
was released March 1, 2023. The testing phase ended on
March 7, 2023 with team submissions finalized.

3. Challenge Results
One hundred and nineteen teams participated in Track

1. Of those 119 participants, 44 teams submitted their al-
gorithms during the development phase, and 43 teams sub-
mitted during the testing phase. Track 2 had 105 partic-

Figure 4. The performance differences between the 2021 NTIRE,
2022 PBVS, and 2023 PBVS MAVOC challenges. This figure
plots the Top-1% accuracy of the ten top performing teams for
SAR + EO classification.

Table 4. Top-10 Teams for Track 2 (SAR + EO).

Rank Team Total ↑ Accuracy ↑ AUROC ↑
1 overfittinghhh 0.84 89.60 0.68
2 txccc 0.84 88.77 0.68
3 doggie 0.74 69.80 0.85
4 Raghunath19 0.71 71.40 0.70
5 fcai21 0.71 68.35 0.79
6 sunny088 0.71 68.80 0.76
7 mcc 0.70 68.90 0.74
8 cathy122 0.70 68.10 0.76
9 CCCathy 0.69 67.85 0.74
10 wwwwww 0.67 66.50 0.70

2022 Best (USTC) - 51.09 -

ipants. Of those 105 participants, 32 submitted their al-
gorithm during the development phase, and 47 submitted
their algorithm during the testing phase. There is both an
average performance improvement and a top accuracy im-
provement when compared to the 2021 NTIRE MAVOC
and 2022 PBVS MAVOC challenge results.

3.1. Track 1 SAR Classification Results

In Track 1 of the 2023 competition, teams displayed ex-
ceptional performance, surpassing their counterparts from
the previous year by a significant margin. Notably, the top
model of 2023 achieved a remarkable increase of 73% in its
top-1% accuracy compared to the leading model of 2022.
Figure 3 provides a clear visualization of the performance
gap between the top ten teams of each year’s MAVOC chal-
lenge. Additionally, Table 3 presents a summary of the per-
formance of the highest-performing teams.
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3.2. Track 2 SAR + EO Classification Results

Additionally, teams in Track 2 of the 2023 competition
outperformed the 2022 competition teams by a consider-
able margin. The top-1% accuracy of the top model of 2023
increased by 75% over the top performing model of 2022.
Figure 4 illustrates the performance difference between the
top 10 teams from each year of the MAVOC challenge. Ta-
ble 4 is a summary of the performance of the top performing
teams.

4. Challenge Methods
This section briefly summarizes the approaches used by

the teams that submitted their models and documentation
for prize consideration. Not all teams submitted their meth-
ods and are subsequently absent from this paper. We ex-
amine the submitted methods from the top teams in each
track. This section consists of edited summaries submitted
by each team.

4.1. Track 1

4.1.1 Rank 1: fcai

The team fcai presents a novel three-stage approach for
improving the performance of computer vision models on
imbalanced datasets. Their method utilizes a ResNet-101
backbone pre-trained on ImageNet for feature extraction.
In the first stage, the model is trained on the entire dataset
to learn rich feature representations. However, they observe
severe imbalances in both the distribution of classes, with
80% of the samples belonging to class 0 and only 0.15% to
class 9, and the distribution of samples within each class,
particularly in the head classes. This leads to redundancy
and overfitting issues. To address these challenges, they
employ the Class-Balanced Loss to re-weight the loss of
each class based on its effective sample size. In the second
and third stages, they generate reliable pseudo-labels and
utilize semi-supervised learning to leverage the underlying
structure and distribution of the data to improve model per-
formance and reduce reliance on labeled data. In the sec-
ond stage, they predict the remaining samples in the test set
using a high confidence model and cluster them using DB-
SCAN and k-means. They filter out outlier clusters and gen-
erate pseudo-labels to create a balanced dataset for semi-
supervised training. To further enhance data diversity, team
fcai apply SAR dataset-specific data augmentation strate-
gies. In the third stage, they introduce a novel Reliable
Sample Pool (RSP) to enhance the model’s confidence in
predicting in-distribution data and its out-of-distribution de-
tection ability. The RSP stores the top-N samples with the
highest confidence scores for each class prediction on the
test set after each epoch. These reliable samples are in-
cluded in the training set of the next epoch to strengthen
the model’s trust in in-distribution data. The capacity of the

RSP is a learnable hyperparameter, and the samples in the
pool will also be updated as the model changes. Addition-
ally, they fine-tune the model using the reliable samples in
the RSP.

4.1.2 Rank 2: Running

Team Running proposes a novel domain alignment embed-
ded contrastive learning semi-supervised network (DCsem-
Net) for aerial view object classification. The schematic of
the proposed DCsemNet for aerial view object classifica-
tion is depicted in Figure 5, which is described in detail
as follows. Team Running first pre-processes the training
data. Through data analysis, they found that the training
data is long-tailed and there are many repeated scene sam-
ples. Therefore, they design a key frame extraction strategy
to clean the data, thereby reducing the samples of similar
scenes and reducing serious data imbalance.

Team Running adopts a two-stage training strategy to op-
timize the performance of the proposed model. In the first
stage, based on the modal complementary between the EO
and SAR data, they propose a domain alignment embedded
contrastive learning feature representation network (DCFR-
Net). The proposed DCFRNet extracts the domain invariant
features of the bi-modal data, by minimizing the maximum
mean discrepancy (MMD), conditional maximum mean dis-
crepancy (CMMD), and cosine-similarity of the two data
features, which reduces the distribution difference between
the SAR data features and the bi-modal fusion data fea-
tures. The proposed DCFRNet then embeds domain align-
ment into a balance contrastive learning network to increase
the inter-class discrimination and use the logit compensa-
tion strategy to eliminate the bias caused by data imbalance,
so as to optimize the long-tail problem.

In the second stage, they propose a high-confidence
pseudo-label generation based semi-supervised optimiza-
tion strategy (HPGSem). They obtain the trained classifi-
cation network in the first stage to generate pseudo-label
of the testing data. They train a Resnet-based classifica-
tion network to output the probability, and obtain the con-
fidence of each sample by enhancing the energy function.
Then, they train a binary classification network for out-
of-distribution detection tasks by using high-confidence in-
distribution samples and low-confidence out-of-distribution
samples. The confidence of the binary classification results
is used as the discriminant inside and outside the distri-
bution, and the out-of-distribution samples are eliminated.
The proposed HPGSem introduces confidence learning to
obtain the high-confidence pseudo label. After that, semi-
supervised optimization strategy is adopted to fine-tune the
model obtained in the first stage, so as to obtain the final
high-precision classification results. Due to the characteris-
tics of repeated scenes in the test data, they design a post-
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Figure 5. Team Running’s model architecture. This architecture is similar to team doggie’s architecture. This is due to both teams
comprising of the same members.

processing method based on the similarity clustering of im-
age scenes. The labels of the same scene in each cluster are
uniformly corrected using the majority vote procedure.

4.1.3 Rank 4: Raghunath19

To address the issue of imbalanced training data, team
Raghunath19 implemented a strategy to ensure that each
class had an equal number of 6,000 images. For classes that
originally had over 6,000 images, they randomly selected
6,000 images to include in the balanced dataset. Mean-
while, for classes with fewer than 6,000 images, they ap-
plied various data augmentation techniques such as flip-
ping, rotation, and affine transform to expand the dataset to
6,000 images. As a result, their new training data comprises
a total of 60,000 images, which is a substantial decrease
from the original dataset size of approximately 459,000 im-
ages. They experimented with several different architec-
tures and found that the most effective approach for their
validation/test strategy involved using a ResNet-34 [4] net-
work with pre-trained weights. In training the ResNet-34
network, they employed a combination of triplet loss [21]
and cross-entropy loss, inspired by the work of [1]. To
reduce the dimensionality of individual EO and SAR fea-
tures, they performed principal component analysis (PCA)

and built a k-d tree of depth 128 on the resulting features to
obtain the appearance label of each training sample in the
tree node. To obtain positive and negative triplet loss sam-
ples, they searched the k-d tree for each anchor in each tree
node. Specifically, they identified positive samples that be-
longed to the same class as the anchor, but were not located
in the same node, and negative samples that were located in
the same node as the anchor, but were not of the same class.
This process resulted in about 500,000 triplet pairs for net-
work training, with approximately equal numbers of triplet
pairs for each positive and negative class pair.

Team Raghunath19 used a similar architecture for the
Track 1 and Track 2 challenges. The main difference in be-
tween them is the initial convolution layer has 1 channel and
2 channels for Track 1 and Track 2 challenges respectively.
For Track 2 they also implemented an ensemble method
where they used ensemble fusion technique to achieve bet-
ter results. The models that were used for ensemble fu-
sion were ResNet-34 [4], EfficientNet-B0 and Swin Trans-
former [13]

4.1.4 Rank 6: yangyang6

Team yangyang6 used the same approach detailed in the
next section: Track 2, “overfittinghhh”.
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Figure 6. Team VL’s model overview.

4.1.5 Rank 8: VL

Team VL aims to obtain a SAR classification model similar
to a EO classification model. The structure of their pro-
posed method is shown in Figure 6. Their pipeline consists
of data processing, model design, training, and inference.
To deal the long-tail problem, they use a non-uniform en-
hancement strategy to increase the sample number of tail
classes. Then they randomly select 5000 images from each
class to get a uniform train dataset. The enhancements in-
cludes crop, rotation, and resize.

In the train stage, the pair SAR and EO images are fed to
the model to get their features Fs and Fe. And then they are
input to a encoder module G to generate consistent features
Gs and Ge. Team VL assumes the output of the encoder
to be consistent regardless of whether the input is a SAR
object or EO object. And they use a same loss Lsame to su-
pervise the learning of the consistent features. At the same
time, the Fs and Fe should be different and a difference loss
Ldiff is used to supervise this learning process. Then the Fs,
Fe, and Gs are fed to classifiers to predict the classification
probability. The cross-entropy function is used to super-
vise them. The training pipeline contains two stage. In the
Stage 1, the uniform training dataset (SAR and EO images)
is used to train the model with the pre-trained Swin Trans-
former on ImageNet (100 epochs). In the Stage 2, they first
generate pseudo-labels of test images according to the high
score prediction of the Stage 1 model. And then the Stage 1
model is finetuned for 19 epochs with the pseudo-dataset.

4.1.6 Rank 10: jsyoon

Team jsyoon proposed a system that is based on transfer
learning methods using the ConvNext model. The proposed
system automatically cleaned the input dataset through the
perceptual hash-based deduplication algorithm [10] until
each label has fewer than 4000 images. They removed the
error data, which has zero value of the sum of pixel values
except ’Sedan(0)’. They employed various data augmenta-
tion processes in the training phase (flipping, rotate, Gaus-
sian noise, random resize, crop) [19]. The x-large size of
the pre-trained ConvNext model was utilized for the classi-

fication model. They used a cosine annealing-based learn-
ing rate scheduler to overcome the overfitting in the training
phase [14].

4.2. Track 2

4.2.1 Rank 1: overfittinghhh

Team overfittinghhh employs a two stage model. In Stage
1 they trained multiple 10-class classifiers and used them
to vote for each sample, taking the most-voted class as the
final label and the average confidence of these models as
the final confidence score. They found that some classes
(class 0: sedan, 1: suv, 2: pickup truck, 3: van) are visually
similar, so they trained a two-stage classification module to
optimize their performance.

In Stage 2, they added a classification model and a clus-
tering module to re-identify the samples that are easily con-
fused (class 0 - 3). Specifically, they used the Perceptual
hash algorithm to cluster the samples that were classified
as class 0 - 3, and then classified the samples within each
cluster using the 4-class classifier. The most frequently oc-
curring category was taken as the label for all samples in
the cluster. To fuse SAR and EO, they first extract features
using a backbone model and then test Transformer and tra-
ditional concatenation feature fusion strategies, as well as a
concatenation module based on channel self-attention. Ul-
timately, they used a concatenation feature fusion strategy
based on channel attention. They used the output results of
multiple models to vote for the final result. The confidence
of the sample is calculated from the average of multiple vot-
ing models. In the experiment, they found that the distribu-
tion of class 0 - 3 categories is similar, so they trained a
two-stage module to further optimize.

4.2.2 Rank 3: doggie

Team doggie proposed a balanced contrastive learning
semi-supervised network (BCLsemNet) for multi-modal
aerial view object classification. This architecture is sim-
ilar to the one used by team Running, as both teams are
comprised of the same team members. The architecture of
the proposed BCLsemNet is depicted in Figure 7. They
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Figure 7. Architecture of the balance contrastive learning semi-
supervised network (BCLsemNet) for multi-modal object classifi-
cation. This architecture is similar to team Running’s architecture.
This is due to both teams comprising of the same members.

first pre-process the training data. Because the training
data is extremely unbalanced and there are many similar
scene samples, they propose a key frame extraction strategy
to clean the data, thereby reducing the samples of similar
scenes and alleviating the long tail problem of the data.

They adopt a two-stage training strategy to optimize the
performance of the model. In the first stage, they propose
a balanced contrastive learning feature representation net-
work (BCLNet). Due to the modal complementarity be-
tween EO data and SAR data, they stitch EO data and SAR
data according to the channel dimension. The spliced data
is input into the balanced contrastive learning network to in-
crease the inter-class gap and reduce the intra-class differ-
ence. For the long-tail problem of data, they embed class-
averaging and class-complement strategies in contrastive
learning to optimize the long-tail problem.

In the second stage, they propose a high-confidence
pseudo-label generation based semi-supervised optimiza-
tion strategy (HPGSem). They obtain the trained classifica-
tion network in the first stage to generate pseudo-label of the
testing data. By screening and optimizing the pseudo-labels
generated in the first stage, highly reliable pseudo-labels are
obtained for semi-supervised training. Specifically, they de-
sign a binary classification network for out-of-distribution
detection tasks. They train a Resnet-based classification
network to output the probability of each predicted sample,
post-process the probability value, and enhance the energy
function to obtain each sample. According to the level of its
energy value, some samples are selected according to the
category as the inside and outside the distribution samples.
These samples are given 1-0 labels and sent to the binary
classification network for training. The confidence of the
binary classification results is used as the discriminant in-
side and outside the distribution, and the out-of-distribution

samples are eliminated. Then, the proposed HPGSem in-
troduces confidence learning to evaluate the quality of the
generated pseudo-label, and chooses the high-confidence
pseudo-label. After obtaining the high-confidence pseudo
label, a semi-supervised optimization strategy is adopted to
fine-tune the classification model obtained in the first stage,
so as to obtain the final high-precision classification net-
work. Due to the characteristics of repeated scenes in the
test data, after obtaining the test labels, they design a post-
processing method based on the similarity clustering of im-
age scenes. The labels of the same scene in each cluster are
uniformly corrected using the majority vote procedure.

4.2.3 Rank 4: Raghunath19

The same base approach is used as in Track 1 with a mi-
nor additions. For Track 2 they implemented an ensem-
ble method where they used ensemble fusion technique
to achieve better results. The models that were used for
ensemble fusion were ResNet-34 [4], EfficientNet-B0 and
Swin Transformer [13].

4.2.4 Rank 5: fcai21

Despite differences between EO and SAR images, they as-
sume that the SAR image domain provides knowledge rep-
resentation beyond the EO image domain. Hence, they uti-
lize high-confidence samples from the SAR image classi-
fication network that their team developed in Track 1 as
pseudo-labels. To address the issue of long-tail distribution,
they propose a two-stage network with shared pooling.

5. Conclusions
Submission performances for both tracks of the 2023

PBVS MAVOC challenge increased dramatically when
compared with the 2022 challenge results. In Track 1, we
observed a 73% increase in accuracy. Similarly, in Track 2,
we observed a 75% increase in accuracy. These score im-
provements can be attributed to advancements in the archi-
tecture and training methods. The observed results demon-
strate many new approaches to accommodate sparse and
non-uniformly distributed data.

The 2023 MAVOC challenge demonstrated remarkable
growth in both participation and the performance of the par-
ticipants. We have observed year over year growth in both
of these metrics. Additionally, the introduction of an out-
of-distribution score has provided insight into these ATR
models and enable more informed application.
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