|
Records |
Links |
|
Author |
Miguel Realpe; Boris X. Vintimilla; Ljubo Vlacic |

|
|
Title |
Multi-sensor Fusion Module in a Fault Tolerant Perception System for Autonomous Vehicles |
Type |
Journal Article |
|
Year |
2016 |
Publication  |
Journal of Automation and Control Engineering (JOACE) |
Abbreviated Journal |
|
|
|
Volume |
Vol. 4 |
Issue |
|
Pages |
pp. 430-436 |
|
|
Keywords |
Fault Tolerance, Data Fusion, Multi-sensor Fusion, Autonomous Vehicles, Perception System |
|
|
Abstract |
Driverless vehicles are currently being tested on public roads in order to examine their ability to perform in a safe and reliable way in real world situations. However, the long-term reliable operation of a vehicle’s diverse sensors and the effects of potential sensor faults in the vehicle system have not been tested yet. This paper is proposing a sensor fusion architecture that minimizes the influence of a sensor fault. Experimental results are presented simulating faults by introducing displacements in the sensor information from the KITTI dataset. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
English |
Summary Language |
English |
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
cidis @ cidis @ |
Serial |
51 |
|
Permanent link to this record |
|
|
|
|
Author |
Marjorie Chalen; Boris X. Vintimilla |

|
|
Title |
Towards Action Prediction Applying Deep Learning |
Type |
Journal Article |
|
Year |
2019 |
Publication  |
Latin American Conference on Computational Intelligence (LA-CCI); Guayaquil, Ecuador; 11-15 Noviembre 2019 |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
pp. 1-3 |
|
|
Keywords |
action prediction, early recognition, early detec- tion, action anticipation, cnn, deep learning, rnn, lstm. |
|
|
Abstract |
Considering the incremental development future action prediction by video analysis task of computer vision where it is done based upon incomplete action executions. Deep learning is playing an important role in this task framework. Thus, this paper describes recently techniques and pertinent datasets utilized in human action prediction task. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
cidis @ cidis @ |
Serial |
129 |
|
Permanent link to this record |
|
|
|
|
Author |
Ma. Paz Velarde; Erika Perugachi; Dennis G. Romero; Ángel D. Sappa; Boris X. Vintimilla |

|
|
Title |
Análisis del movimiento de las extremidades superiores aplicado a la rehabilitación física de una persona usando técnicas de visión artificial. |
Type |
Journal Article |
|
Year |
2015 |
Publication  |
Revista Tecnológica ESPOL-RTE |
Abbreviated Journal |
|
|
|
Volume |
Vol. 28 |
Issue |
|
Pages |
pp. 1-7 |
|
|
Keywords |
Rehabilitation; RGB-D Sensor; Computer Vision; Upper limb |
|
|
Abstract |
Comúnmente durante la rehabilitación física, el diagnóstico dado por el especialista se basa en observaciones cualitativas que sugieren, en algunos casos, conclusiones subjetivas. El presente trabajo propone un enfoque cuantitativo, orientado a servir de ayuda a fisioterapeutas, a través de una herramienta interactiva y de bajo costo que permite medir los movimientos de miembros superiores. Estos movimientos son capturados por un sensor RGB-D y procesados mediante la metodología propuesta, dando como resultado una eficiente representación de movimientos, permitiendo la evaluación cuantitativa de movimientos de los miembros superiores. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
ESPOL |
Place of Publication |
|
Editor |
|
|
|
Language |
English |
Summary Language |
English |
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
cidis @ cidis @ |
Serial |
39 |
|
Permanent link to this record |
|
|
|
|
Author |
Angel D. Sappa; Cristhian A. Aguilera; Juan A. Carvajal Ayala; Miguel Oliveira; Dennis Romero; Boris X. Vintimilla; Ricardo Toledo |


|
|
Title |
Monocular visual odometry: a cross-spectral image fusion based approach |
Type |
Journal Article |
|
Year |
2016 |
Publication  |
Robotics and Autonomous Systems Journal |
Abbreviated Journal |
|
|
|
Volume |
Vol. 86 |
Issue |
|
Pages |
pp. 26-36 |
|
|
Keywords |
Monocular visual odometry LWIR-RGB cross-spectral imaging Image fusion |
|
|
Abstract |
This manuscript evaluates the usage of fused cross-spectral images in a monocular visual odometry approach. Fused images are obtained through a Discrete Wavelet Transform (DWT) scheme, where the best setup is em- pirically obtained by means of a mutual information based evaluation met- ric. The objective is to have a exible scheme where fusion parameters are adapted according to the characteristics of the given images. Visual odom- etry is computed from the fused monocular images using an off the shelf approach. Experimental results using data sets obtained with two different platforms are presented. Additionally, comparison with a previous approach as well as with monocular-visible/infrared spectra are also provided showing the advantages of the proposed scheme. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
Enlgish |
Summary Language |
English |
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
cidis @ cidis @ |
Serial |
54 |
|
Permanent link to this record |
|
|
|
|
Author |
Ricaurte P; Chilán C; Cristhian A. Aguilera; Boris X. Vintimilla; Angel D. Sappa |

|
|
Title |
Feature Point Descriptors: Infrared and Visible Spectra |
Type |
Journal Article |
|
Year |
2014 |
Publication  |
Sensors Journal |
Abbreviated Journal |
|
|
|
Volume |
Vol. 14 |
Issue |
|
Pages |
pp. 3690-3701 |
|
|
Keywords |
cross-spectral imaging; feature point descriptors |
|
|
Abstract |
This manuscript evaluates the behavior of classical feature point descriptors when they are used in images from long-wave infrared spectral band and compare them with the results obtained in the visible spectrum. Robustness to changes in rotation, scaling, blur, and additive noise are analyzed using a state of the art framework. Experimental results using a cross-spectral outdoor image data set are presented and conclusions from these experiments are given. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
English |
Summary Language |
English |
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
cidis @ cidis @ |
Serial |
28 |
|
Permanent link to this record |
|
|
|
|
Author |
Angel D. Sappa; Juan A. Carvajal; Cristhian A. Aguilera; Miguel Oliveira; Dennis G. Romero; Boris X. Vintimilla |

|
|
Title |
Wavelet-Based Visible and Infrared Image Fusion: A Comparative Study |
Type |
Journal Article |
|
Year |
2016 |
Publication  |
Sensors Journal |
Abbreviated Journal |
|
|
|
Volume |
Vol. 16 |
Issue |
|
Pages |
pp. 1-15 |
|
|
Keywords |
image fusion; fusion evaluation metrics; visible and infrared imaging; discrete wavelet transform |
|
|
Abstract |
This paper evaluates different wavelet-based cross-spectral image fusion strategies adopted to merge visible and infrared images. The objective is to find the best setup independently of the evaluation metric used to measure the performance. Quantitative performance results are obtained with state of the art approaches together with adaptations proposed in the current work. The options evaluated in the current work result from the combination of different setups in the wavelet image decomposition stage together with different fusion strategies for the final merging stage that generates the resulting representation. Most of the approaches evaluate results according to the application for which they are intended for. Sometimes a human observer is selected to judge the quality of the obtained results. In the current work, quantitative values are considered in order to find correlations between setups and performance of obtained results; these correlations can be used to define a criteria for selecting the best fusion strategy for a given pair of cross-spectral images. The whole procedure is evaluated with a large set of correctly registered visible and infrared image pairs, including both Near InfraRed (NIR) and LongWave InfraRed (LWIR). |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
English |
Summary Language |
English |
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
cidis @ cidis @ |
Serial |
47 |
|
Permanent link to this record |
|
|
|
|
Author |
Jorge L. Charco; Angel D. Sappa; Boris X. Vintimilla; Henry O. Velesaca |

|
|
Title |
Transfer Learning from Synthetic Data in the Camera Pose Estimation Problem |
Type |
Conference Article |
|
Year |
2020 |
Publication  |
The 15th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2020); Valletta, Malta; 27-29 Febrero 2020 |
Abbreviated Journal |
|
|
|
Volume |
4 |
Issue |
|
Pages |
498-505 |
|
|
Keywords |
Relative Camera Pose Estimation, Siamese Architecture, Synthetic Data, Deep Learning, Multi-View Environments, Extrinsic Camera Parameters. |
|
|
Abstract |
This paper presents a novel Siamese network architecture, as a variant of Resnet-50, to estimate the relative camera pose on multi-view environments. In order to improve the performance of the proposed model
a transfer learning strategy, based on synthetic images obtained from a virtual-world, is considered. The
transfer learning consist of first training the network using pairs of images from the virtual-world scenario
considering different conditions (i.e., weather, illumination, objects, buildings, etc.); then, the learned weight
of the network are transferred to the real case, where images from real-world scenarios are considered. Experimental results and comparisons with the state of the art show both, improvements on the relative pose
estimation accuracy using the proposed model, as well as further improvements when the transfer learning
strategy (synthetic-world data – transfer learning – real-world data) is considered to tackle the limitation on
the training due to the reduced number of pairs of real-images on most of the public data sets. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
978-989758402-2 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
gtsi @ user @ |
Serial |
120 |
|
Permanent link to this record |
|
|
|
|
Author |
Rafael E. Rivadeneira; Angel D. Sappa; Boris X. Vintimilla |

|
|
Title |
Thermal Image Super-Resolution: a Novel Architecture and Dataset |
Type |
Conference Article |
|
Year |
2020 |
Publication  |
The 15th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2020); Valletta, Malta; 27-29 Febrero 2020 |
Abbreviated Journal |
|
|
|
Volume |
4 |
Issue |
|
Pages |
111-119 |
|
|
Keywords |
Thermal images, Far Infrared, Dataset, Super-Resolution. |
|
|
Abstract |
This paper proposes a novel CycleGAN architecture for thermal image super-resolution, together with a large
dataset consisting of thermal images at different resolutions. The dataset has been acquired using three thermal
cameras at different resolutions, which acquire images from the same scenario at the same time. The thermal
cameras are mounted in rig trying to minimize the baseline distance to make easier the registration problem.
The proposed architecture is based on ResNet6 as a Generator and PatchGAN as Discriminator. The novelty
on the proposed unsupervised super-resolution training (CycleGAN) is possible due to the existence of aforementioned thermal images—images of the same scenario with different resolutions. The proposed approach
is evaluated in the dataset and compared with classical bicubic interpolation. The dataset and the network are
available. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
978-989758402-2 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
gtsi @ user @ |
Serial |
121 |
|
Permanent link to this record |
|
|
|
|
Author |
Rafael E. Rivadeneira; Angel D. Sappa; Boris X. Vintimilla; Lin Guo; Jiankun Hou; Armin Mehri; Parichehr Behjati; Ardakani Heena Patel; Vishal Chudasama; Kalpesh Prajapati; Kishor P. Upla; Raghavendra Ramachandra; Kiran Raja; Christoph Busch; Feras Almasri; Olivier Debeir; Sabari Nathan; Priya Kansal; Nolan Gutierrez; Bardia Mojra; William J. Beksi |

|
|
Title |
Thermal Image Super-Resolution Challenge – PBVS 2020 |
Type |
Conference Article |
|
Year |
2020 |
Publication  |
The 16th IEEE Workshop on Perception Beyond the Visible Spectrum on the Conference on Computer Vision and Pattern Recongnition (CVPR 2020) |
Abbreviated Journal |
|
|
|
Volume |
2020-June |
Issue |
9151059 |
Pages |
432-439 |
|
|
Keywords |
|
|
|
Abstract |
This paper summarizes the top contributions to the first challenge on thermal image super-resolution (TISR) which was organized as part of the Perception Beyond the Visible Spectrum (PBVS) 2020 workshop. In this challenge, a novel thermal image dataset is considered together with stateof-the-art approaches evaluated under a common framework.
The dataset used in the challenge consists of 1021 thermal images, obtained from three distinct thermal cameras at different resolutions (low-resolution, mid-resolution, and high-resolution), resulting in a total of 3063 thermal images. From each resolution, 951 images are used for training and 50 for testing while the 20 remaining images are used for two proposed evaluations. The first evaluation consists of downsampling the low-resolution, midresolution, and high-resolution thermal images by x2, x3 and x4 respectively, and comparing their super-resolution
results with the corresponding ground truth images. The second evaluation is comprised of obtaining the x2 superresolution from a given mid-resolution thermal image and comparing it with the corresponding semi-registered highresolution thermal image. Out of 51 registered participants, 6 teams reached the final validation phase. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
English |
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
21607508 |
ISBN |
978-172819360-1 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
cidis @ cidis @ |
Serial |
123 |
|
Permanent link to this record |
|
|
|
|
Author |
Angely Oyola; Dennis G. Romero; Boris X. Vintimilla |

|
|
Title |
A Dijkstra-based algorithm for selecting the Shortest-Safe Evacuation Routes in dynamic environments (SSER) |
Type |
Conference Article |
|
Year |
2017 |
Publication  |
The 30th International Conference on Industrial, Engineering, Other Applications of Applied Intelligent Systems (IEA/AIE 2017) |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
131-135 |
|
|
Keywords |
|
|
|
Abstract |
|
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
cidis @ cidis @ |
Serial |
55 |
|
Permanent link to this record |