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Abstract—The identification of shrimp organs in biology using
histological images is a complex task. Shrimp histological images
poses a big challenge due to their texture and similarity among
classes. Image classification by using feature engineering and
convolutional neural networks (CNN) are suitable methods to
assist biologists when performing organ detection. This work
evaluates the Bag-of-Visual-Words (BOVW) and Pyramid-Bag-
of-Words (PBOW) models for image classification leveraging big
data techniques; and transfer learning for the same classification
task by using a pre-trained CNN. A comparative analysis
of these two different techniques is performed, highlighting
the characteristics of both approaches on the shrimp organs
identification problem.

Index Terms—Aquaculture, histology, organ identification,
CNN, transfer learning, feature extraction, fine-tuning, big data.

I. INTRODUCTION

Nowadays, different tools have been developed to categorize
a variety of applications in biology such as: registration of
known animal species [1]; categorization of genus [2]; cell
segmentation and cell counting from histological images [3],
amongst others [4] [5] [6]. Complementarily, aquaculture
plays a very important role in the world food security and
global economic development [7]. It is one of the fastest
growing food production sectors in the world due to the
increased demand for fish and crustacean [8] [9]. Species
cultivated in aquaculture include crustaceans, mollusks and
fishes [10]. However, the major constraints to the growth of the
aquaculture sector are infectious diseases, which cause great
economic losses [11]. Due to diseases, aquaculture production
loses its economic value due to increased mortality, growth
problems and even a bad taste and changes in appearance
[12]. On the other hand, the variability of some water quality
parameters beyond acceptable limits can also cause slow
growth and stress that contributes to the emergence of diseases
[13].

Shrimp farming is one of the main aquaculture activities
world wide and in constant growth [14]. However, viral and
bacterial diseases are major constraints on their production,
becoming a threat to their sustainability. Histology is one of

the main tools for organ detection and disease diagnosis, and it
is especially important when molecular tools are not available
for the specific detection of a pathogen.

The design of a suitable method for automatic recognition
of organs demands a multi-disciplinary effort from different
areas of research such as life sciences, computer science
and engineering. An histology-based automatic identification
approach in aquaculture requires, at the beginning, to identify
the shrimp organs before attempting to discover the presence
of a particular disease. Organ identification is not a trivial
task, even for humans, especially by using histological images
obtained with a 40x-zoom microscope, which are the kind of
images used in this work [15].

The present work uses a dataset created at ESPOL
University. It consist of 2.535 histological images of Penaeus
(Litopenaeus) vannamei shrimp organs, categorized by disease
(white spot disease - WSD and vibriosis, caused by white spot
syndrome virus - WSSV and pathogenic bacteria species of the
family Vibrionaceae) and taken at 40X microscope zoom. The
dataset distributed in 11 shrimp organs (classified as healthy,
WSD and vibriosis) is detailed in Table I.

Table I: Dataset used in the paper: 11 organs classified as
healthy, WSD and Vibriosis

Ord Organ Healthy WSD Vibriosis Total
1 Gills 146 71 70 287
2 Connective stomach 151 70 221
3 Body epithelium 144 70 80 294
4 Stomach epithelium 141 70 211
5 Intestine epithelium 147 70 217
6 Nervous Cord 146 70 216
7 Hematopoietic tissue 170 70 240
8 Hepatopancreas 147 70 217
9 Muscle 164 62 226
10 Linfoid organ 126 70 196
11 Pleopods 140 70 210

Total 1622 631 282 2535

A histological image has a particular structure composed
with few colors and different shapes of borders and textures.
Furthermore, when these images are zoomed-in with the



microscope, different organs could merge together in the same
image, which increases the complexity of the problem at hand.

Over the past few years, deep CNNs have revolutionized
large-scale image recognition and classification. Virtually all
of today’s high achieving algorithms and architectures for
image classification and recognition make use of deep CNN
architectures in some way [16] [17] [18]. These advances have
been made possible by large public image repositories and
the use of high performance GPUs. CNNs are a set of layers
in which each layer performs a non-linear transformation
function learned from a labeled set of data. However, the deep
learning approach requires datasets with large sizes, which
increases at the same time costs and efforts that are hard to
sustain indefinitely when working with histological images.

The purpose of this paper is to compare the use of feature
engineering, with big data techniques, and deep learning in
aquaculture, to identify shrimp organs by using histological
images. The paper is structured as follows: In part II the
methodology used during the experiments is presented. Part III
describes the implementation of all the experiments conducted
during the research. Part IV shows the results. Part V includes
discussion and future works and finally, in Part VI the
conclusions are presented.

II. METHODOLOGY

The image classification pipeline for deep learning and
feature engineering is comprised of 5 steps as depicted in Fig.
1 (step 3 does not apply to deep learning). Each step is defined
as follows:

• Step 1: Structuring the initial dataset. This step
involves the images themselves as well as the labels
associated with each image. It is important that the
number of images for each category is fairly uniform or
balanced, in order to avoid any bias during the training
step. For datasets too big to fit in memory, or for more
efficient methods to train deep networks, it is more
convenient to store the dataset in an HDF5 file, which is
a binary format that can be accessed in slices or batches
in a NumPy-like fashion.

• Step 2: Splitting the dataset into two (optionally three)
parts.

• Step 3: Extracting features to abstractly quantify
and represent each image. Common choices of features
include: LBP, HOG, SIFT, amongst others [19]. This step
does not apply for a deep learning approach.

• Step 4: Training the classification model. For feature
engineering, this step depends on each individual
algorithm such as: Support Vector Machine (SVM),
Random Forest, Decision Trees, etc. For deep learning,
we apply a form of gradient descent, or other advanced
optimization techniques: Adagrad [20], Adadelta [21],
Adam [22], and Nadam [23].

• Step 5: Evaluating the classifier or the network using
metrics such as: Precision, recall, F1 score, confusion
matrix, among others.

Figure 1: Image Classification Pipeline

III. IMPLEMENTATION

All the experiments were carried out on a workstation
computer with GPU capability (Titan X, 12 GB RAM).
The spark configuration used in this work includes python
programming interface or pyspark, standalone mode on a
single machine, and interactive mode using jupyter notebook.

A. Feature Engineering Experiments

A total of 18 experiments were carried out in order to
classify shrimp organs, using different configurations of SURF
keypoint detector and RootSIFT feature extractor, and Local
Binary Patterns. From all the experiments, 16 of them were
implemented using the BOVW model y the remaining two
with the PBOW model. As a matter of simplicity, the results
of the eight experiments achieving over 80% accuracy are
depicted in Table II and Table III. The entire dataset was
splitted in 80% for training and 20% for testing. The classifier
used in all the experiments, as well as the clustering algorithm
used to construct the vocabulary of words, was SVM and K-
means respectively.

The feature extraction process is inherently a task that
can be made parallel, it was performed leveraging Hadoop
Streaming using Python 3.5, as well as using well-know
libraries for computer vision and machine learning such
as: scikit-image, scikit-learn, sklearn, and Opencv 3.3. After
running the Hadoop Streaming job for the SURF keypoint
detector and RootSIFT descriptor, we ended up with the total
feature vectors with 128-dim, distributed in over 150 part files
totalling sizes over 15 GB that correspond to the entire features
extracted from the original dataset. The amount of feature
vectors depends on the Hessian Threshold used with the SURF
keypoint detector, ranging from 250.000 to approximately
5.500.000 for all the experiments.

Clustering the features to form a visual vocabulary was
performed by leveraging pyspark and MLlib, whose input
files were the features extracted in the preceding step,
and the resulting output were the visual words required to
construct the bag-of-words in the next step. The K-Means
model implemented in MLlib requires only a single feature
column with float values, this is accomplished with the
VectorAssembler function. Before implementing the K-means
algorithm, it is required to find the best value of K that
optimizes the model. This task was accomplished by using
the KMeans() object, and the methods fit and computeCost
for 13 different values of K (500, 1000, 1300, 1500, 1700,
2000, 2500, 3000, 3500, 4000, 5000, 7500, 10000). The best
value of K falls between 3000 to 4000, as seen in Figure 2.
This was the longest task performed during step 2 of the bovw
model.



Table II: Precision, Recall and F1-score obtained in the experiments for each of the 11 organs using Feature Engineering

SURF_RootSIFT_k500 SURF_RS_HT400_k1500 SURF_RS_HT400_k2500 SURF_RootSIFT_k2000
Ord Organ Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

1 Gills 0.81 0.96 0.88 0.83 0.91 0.87 0.88 0.90 0.89 0.83 0.96 0.89
2 Connective stomach 0.89 0.98 0.93 0.96 0.95 0.96 0.94 0.98 0.96 1.00 0.98 0.99
3 Body epithelium 0.71 0.70 0.70 0.92 0.62 0.74 0.80 0.77 0.78 0.68 0.80 0.74
4 Stomach epithelium 0.67 0.63 0.65 0.80 0.74 0.76 0.78 0.74 0.76 0.86 0.59 0.70
5 Intestine epithelium 0.78 0.86 0.82 0.88 0.87 0.87 0.85 0.94 0.89 0.88 0.86 0.87
6 Nervous Cord 0.80 0.89 0.84 0.69 1.00 0.82 0.84 0.98 0.91 0.85 0.89 0.87
7 Hematopoietic tissue 0.79 0.80 0.80 0.79 0.77 0.78 0.87 0.80 0.83 0.69 0.92 0.79
8 Hepatopancreas 0.88 0.90 0.89 0.81 0.88 0.85 0.91 0.95 0.93 0.79 0.90 0.84
9 Muscle 0.95 0.77 0.85 0.94 0.81 0.87 0.94 0.73 0.83 0.97 0.71 0.82

10 Linfoid organ 0.72 0.82 0.77 0.75 0.77 0.76 0.70 0.86 0.77 0.85 0.76 0.81
11 Pleopods 0.73 0.51 0.60 0.67 0.72 0.70 0.72 0.62 0.67 0.68 0.53 0.60

Total 0.80 0.80 0.79 0.83 0.82 0.81 0.84 0.84 0.84 0.82 0.81 0.81

Table III: Precision, Recall and F1-score obtained in the experiments for each of the 11 organs using Feature Engineering

SURF_RootSIFT_k2500 SURF_RootSIFT_k3000 SURF_RootSIFT_k5000 SURF_RootSIFT_k10000
Ord Organ Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

1 Gills 0.82 0.91 0.87 0.88 0.93 0.91 0.85 0.96 0.90 0.88 0.93 0.91
2 Connective stomach 0.94 0.96 0.95 0.89 0.98 0.93 0.89 0.98 0.93 0.96 0.96 0.96
3 Body epithelium 0.79 0.73 0.76 0.63 0.89 0.74 0.73 0.73 0.73 0.72 0.73 0.73
4 Stomach epithelium 0.74 0.56 0.64 0.86 0.61 0.71 0.70 0.63 0.67 0.71 0.66 0.68
5 Intestine epithelium 0.88 0.86 0.87 0.83 0.93 0.88 0.91 0.74 0.82 0.86 0.88 0.87
6 Nervous Cord 0.88 0.80 0.83 0.82 0.91 0.86 0.89 0.73 0.80 0.61 0.98 0.75
7 Hematopoietic tissue 0.84 0.79 0.81 0.74 0.92 0.82 0.81 0.77 0.79 0.95 0.57 0.71
8 Hepatopancreas 0.65 0.98 0.78 0.90 0.86 0.88 0.93 0.90 0.92 0.87 0.79 0.82
9 Muscle 0.95 0.77 0.85 0.98 0.79 0.87 0.89 0.81 0.85 0.93 0.79 0.85

10 Linfoid organ 0.66 0.97 0.79 0.87 0.71 0.78 0.58 0.95 0.72 0.53 0.97 0.69
11 Pleopods 0.80 0.62 0.70 0.86 0.45 0.59 0.72 0.64 0.68 0.82 0.43 0.57

Total 0.82 0.81 0.81 0.83 0.82 0.81 0.81 0.80 0.80 0.81 0.78 0.77

Figure 2: Elbow method for different values of K

B. Deep Learning Experiments

We implemented 8 experiments using three deep learning
techniques: 1) training MiniVGGNet, an end-to-end shallow
network, 2) treating networks as feature extractors using a pre-
trained VGG16 on Imagenet, and 3) Fine-tuning VGG16 with
our own dataset. The exact configuration of each experiment
is detailed below, and four most accurate results are shown in
Table IV:

• Experiment #1 end-to-end networks: Training
MiniVGGNet with Batch Normalization, No data

augmentation, and resizing the images to 64 x 64.
• Experiment #2 end-to-end networks: Similar to

experiment #1, but resizing the images to 96 x 96.
• Experiment #3 networks as feature extractors: The

network used is VGG16 from Keras trained on Imagenet.
We use the features from the last layer previous to the
fully connected, and fed this feature vector to a Logistic
Regression classifier. Images were resized to 224 x 224,
data augmentation techniques were used as well.

• Experiment #4 Fine-tuning: Using the same network
as in the previous experiment, but placing a new
layer after layer 18, with the following architecture:
INPUT – FC – RELU – DO – FC – OUTPUT.
The training was performed using data augmentation,
RMSprop optimization, and the images were resized to
224 x 224. After the warm-up training phase, we trained
the whole network from layer 15.

• Experiment #5 Fine-tuning: Similar to experiment #4
but this time the fine-tuning begins at layer 10.

• Experiment #6 Fine-tuning: Similar to Experiment #4
but this time using a learning rate scheduler decreasing
the learning rate by 0.25 every 10 epochs. The training
was performed with SGD with momentum and nesterov
acceleration from layer 15.

• Experiment #7 Fine-tuning: Similar to Experiment #6
but the final training phase was performed from layer 10.

• Experiment #8 Fine-tuning: Similar to Experiment #6
with a learning rate decay of 0.5 every 10 epochs.



Table IV: Precision, Recall and F1-score obtained in the experiments for each of the 11 organs using Deep Learning techniques

Experiment #4 Experiment #5 Experiment #6 Experiment #8
Ord Organ Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

1 Gills 0.95 1.00 0.97 0.99 0.96 0.97 0.93 1.00 0.96 0.93 1.00 0.96
2 Connective stomach 0.98 0.95 0.96 0.98 0.93 0.95 1.00 0.91 0.95 1.00 0.91 0.95
3 Body epithelium 0.92 0.92 0.92 0.91 0.94 0.92 0.89 0.87 0.88 0.92 0.90 0.91
4 Stomach epithelium 0.89 0.82 0.85 0.95 0.87 0.90 0.86 0.85 0.86 0.88 0.85 0.86
5 Intestine epithelium 0.92 0.89 0.90 0.98 0.94 0.96 0.92 0.89 0.90 0.96 0.92 0.94
6 Nervous Cord 1.00 0.97 0.98 0.97 1.00 0.98 1.00 0.95 0.97 0.98 0.97 0.97
7 Hematopoietic tissue 0.82 0.98 0.89 0.88 0.98 0.93 0.81 0.96 0.88 0.83 0.98 0.90
8 Hepatopancreas 0.98 0.98 0.98 0.96 1.00 0.98 0.96 0.96 0.96 0.98 0.98 0.98
9 Muscle 0.94 0.94 0.94 0.96 0.98 0.97 0.94 0.96 0.95 0.98 0.96 0.97

10 Linfoid organ 0.93 0.80 0.86 0.96 0.92 0.94 0.93 0.82 0.87 0.91 0.84 0.88
11 Pleopods 0.84 0.90 0.87 0.90 0.92 0.91 0.82 0.85 0.84 0.88 0.90 0.89

Total 0.95 0.95 0.93 0.92 0.92 0.95 0.92 0.91 0.91 0.93 0.93 0.93

IV. RESULTS

The evidence shown in Tables II and III demonstrates that
for histological images the BOVW model is more efficient
than the PBOW. Moreover, SURF and RootSIFT are more
robust than LBP’s for this type of applications. The model with
the highest accuracy, 84 %, was SURF _RootSIFT _HT400
_k2500, which is a combination of the SURF keypoint
detector, RootSIFT feature extractor, a Hessian Threshold of
400 for the SURF algorithm, and a cluster of words equals to
2500.

Previously in this paper it was mentioned that one of the
main drawbacks when working with histological images is the
interclass similarity among some classes. One way to evidence
this similarity is by graphically showing the 16 most similar
image patches relevant to each codeword in the vocabulary
(i.e k=1500, k3000, etc), together with their corresponding
class label. Feature vectors with a smaller distance to a
given visual word are considered to be more relevant. For
instance, for the experiment SURF _RootSIFT _k1500, the
visualization of the word #259 in Fig. 3 is relevant enough to
correctly discriminate the class muscle. On the other hand, the
visualization of the word #355 in Fig. 4 is not discriminative
enough, so the patches correspond to many different labels.

This situation arises because the BOVW model
implemented in this paper uses the concept of “Term
frequency”, or simply the number of times a visual word
appears in an image. Visual words that are more common
across all images in a dataset (i.e., less informative) will have
more entries in the histogram, whereas visual words that are
rare (i.e., more informative) will have less entries in the bovw
histogram, which is not the desired effect.

The results shown in IV demonstrates that for histological
images, shallow networks such as MiniVGGNet and transfer
learning in the form of feature extractors do not perform
well. On the other hand, fine-tuning obtained accuracies over
90%, being the most accurate model the one implemented in
experiment #4 with 95% accuracy, an improvement of 11%
in comparison to the best model in the feature engineering
approach. Moreover, the patterns learned in the low-level
layers of pre-trained deep network architectures on the
Imagenet dataset, such as VGG, are discriminative enough to
classify histological images in the higher-level layers.

Figure 3: Discriminative codeword (259)

Figure 4: Non-discriminative codeword (355)

Table V shows the mean and standard deviation for the
three classification metrics (precision, recall, and F1-score)
computed in the experiments for each organ using feature
engineering and deep learning. It is clear that in the case
of feature engineering, the four organs with precision scores
below 80% are: body epithelium, stomach epithelium, linfoid
organ, and pleopods; whereas for deep learning, there are only
two organs achieving less than 90% precision: hematopoietic
tissue, and pleopods. Note that pleopods obtain the least
precision in both approaches, so it might be neccessary to
perform extra image pre-processing of this particular dataset
before passing them through the classifier.

In order to spot overfitting during the training phase,
the respective learning curves for the best models in



Table V: Mean and standard deviation for each organ with the results obtained from the 18 experiments

Ord Organ Mean
Prec.

Mean
Rec.

Mean
F1

Stdev
Prec.

Stdev
Rec.

Stdev
F1

Mean
Prec.

Mean
Rec.

Mean
F1

Stdev
Prec.

Stdev
Rec.

Stdev
F1

1 Gills 0.85 0.93 0.89 0.03 0.02 0.02 0.95 0.99 0.97 0.03 0.02 0.01
2 Connective stomach 0.93 0.97 0.95 0.04 0.01 0.02 0.99 0.93 0.95 0.01 0.02 0.00
3 Body epithelium 0.75 0.75 0.74 0.09 0.08 0.02 0.91 0.91 0.91 0.01 0.03 0.02
4 Stomach epithelium 0.77 0.65 0.70 0.07 0.07 0.05 0.90 0.85 0.87 0.04 0.02 0.02
5 Intestine epithelium 0.86 0.87 0.86 0.04 0.06 0.03 0.95 0.91 0.93 0.03 0.02 0.03
6 Nervous Cord 0.80 0.90 0.84 0.10 0.09 0.05 0.99 0.97 0.98 0.02 0.02 0.01
7 Hematopoietic tissue 0.81 0.79 0.79 0.08 0.11 0.04 0.84 0.98 0.90 0.03 0.01 0.02
8 Hepatopancreas 0.84 0.90 0.86 0.09 0.06 0.05 0.97 0.98 0.98 0.01 0.02 0.01
9 Muscle 0.94 0.77 0.85 0.03 0.04 0.02 0.96 0.96 0.96 0.02 0.02 0.01
10 Linfoid organ 0.71 0.85 0.76 0.12 0.10 0.04 0.93 0.86 0.89 0.92 0.08 0.04
11 Pleopods 0.75 0.57 0.64 0.07 0.10 0.05 0.88 0.89 0.88 0.06 0.03 0.03

both approaches were plotted, this is SURF _RootSIFT
_k2500, whose BOVW sizes were (2524, 2500), for feature
engineering, and Experiment #4 for deep learning.In the first
case, we note that the amount of training samples in the dataset
were sufficient enough for the model to learn without any bias
or variance. In the latter, we notice some signs of overfitting
past epoch 45; however, by using Keras callback functionality,
we checkpointed the best model and serialized it to disk for
further evaluation.

Table VI shows the the duration of each task required to
perform step 2 of the bovw model using pyspark, which
accounts for more than 2 1/2 days. Optimizing the best value of
K is the longest task followed by extracting the cluster centers,
both tasks are candidates to be performed in the cloud to speed
up the process.

Table VI: Duration of Step 2 of the BOVW model using
PySpark

Ord Task Days Hours Minutes Seconds
1 Load files 6 43
2 Print shape 4 11
3 Optimize K 1 23 6 52
4 Cluster centers 17 27 6

Total 2 16 44 52

The performance obtained by the best models in both
approaches was compared with the results obtained in a
similar experiment presented in [24], where the authors used
feature extraction techniques with SIFT as both keypoint
detector and feature extractor, the BOVW model for image
classification, and a SVM classifier; and for deep learning,
they used fine-tuning with a pre-trained AlexNet architecture.
The comparison is shown in Table VII using the F1-score
metric.

For the feature engineering approach, it is clearly observed
that the combination of SURF - RootSIFT drastically improves
the performance over SIFT-SIFT in the following organs:
connective stomach, nervous cord, hepatopancreas, and
muscle. In the case of Gills the performance barely improves,
and for body epithelium there is a decrease in performance.
In the case of deep learning, our proposed approach of fine-
tuning a pre-trained VGG16 network architecture outperforms
the AlexNet architecture in 2% overall.

Table VII: F1 score comparison with results obtained in a
similar work using (SIFT-SIFT) and DNN Alexnet with our
proposed approach (SURF-RootSIFT) and DNN VGG16

ORGAN SIFT-
SIFT

SURF-
RootSIFT

DNN
Alexnet

DNN
VGG

Connective stomach 0.693 0.96 0.934 0.96
Nervous cord 0.478 0.91 0.995 0.98
Hepatopancreas 0.706 0.93 0.934 0.98
Body epithelium 0.885 0.78 0.997 0.92
Muscle 0.380 0.83 0.987 0.94
Gills 0.864 0.89 0.993 0.97
Total 0.84 0.93 0.95

V. FUTURE WORK

This work considered the use of 3 algorithms for keypoint
detection and feature extraction (SURF, RootSIFT, and LBP).
Other algorithms like Histogram of Oriented Gradients (HOG),
color histograms, Good Features to Track (GFFT), STAR, or
Harris could be implemented in the BOVW model, even an
ensemble of feature vectors,in conjunction with a technique of
feature selection could improve the model performance.

A more robust method to determine the similarity between
classes after obtaining the BOVW representation (histogram)
is the chi-square distance, a very popular metric used to
compare histogram distributions. This metric will allow us to
determine which classes are more similar to one another, in
order to implement extra image pre-processing techniques to
ensure that these classes are different.

The use of Term frequency-inverse document frequency,
or simply tf-idf for short, as the input to the BOVW
model for image classification, could improve the results due
to the presence of words in the vocabulary that are not
discriminative enough, and therefore do not contribute with
relevant information to the classifier.

An increase in performance with Deep learning could be
obtained by fine-tuning other state of the art pre-trained
network architectures, such as: ResNet50, VGG19, Inception
V3, Xception and so forth; training a new model from
scratch or performing an ensemble of networks. The last two
approaches would require more computing power and a bigger
dataset. On the other hand, including infrared spectrum as
additional information during image capturing process is being
considered [16].



VI. CONCLUSIONS

A comparative study was conducted in order to evaluate
two approaches of featuring engineering using the BOVW
model for the automatic detection of 11 shrimp organs
from histological images. A combination of SURF keypoint
detector and RootSIFT keypoint extractor provided better
classification performance than SIFT - SIFT, and even LBP,
both using the BOVW model. Moreover, the BOVW model
overcomes the PBOW model for the classification of organs
from histological images. There are 3 classes of organs (linfoid
organ, pleopods, and epithelium stomach), that regardless the
method used, always yield low classification results, which
led to apply a different technique such as TF-IDF. The size
of the dataset is big enough to implement feature engineering
techniques without overfitting, so the technique is suitable to
be considered on a limited input data. However, the results
obtained by using CNN were better on relatively small CNN
models (7 layers on miniVGGNet), this is also favorable in
terms of portability and complexity.
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