|
Charco, J. L., Sappa, A.D., Vintimilla, B.X., Velesaca, H.O. (2021). Camera pose estimation in multi-view environments:from virtual scenarios to the real world. In Image and Vision Computing Journal. (Article number 104182), Vol. 110.
Abstract: This paper presents a domain adaptation strategy to efficiently train network architectures for estimating the relative camera pose in multi-view scenarios. The network architectures are fed by a pair of simultaneously acquired
images, hence in order to improve the accuracy of the solutions, and due to the lack of large datasets with pairs of
overlapped images, a domain adaptation strategy is proposed. The domain adaptation strategy consists on transferring the knowledge learned from synthetic images to real-world scenarios. For this, the networks are firstly
trained using pairs of synthetic images, which are captured at the same time by a pair of cameras in a virtual environment; and then, the learned weights of the networks are transferred to the real-world case, where the networks are retrained with a few real images. Different virtual 3D scenarios are generated to evaluate the
relationship between the accuracy on the result and the similarity between virtual and real scenarios—similarity
on both geometry of the objects contained in the scene as well as relative pose between camera and objects in the
scene. Experimental results and comparisons are provided showing that the accuracy of all the evaluated networks for estimating the camera pose improves when the proposed domain adaptation strategy is used,
highlighting the importance on the similarity between virtual-real scenarios.
|
|
|
Victor Santos, Angel D. Sappa, & Miguel Oliveira. (2017). Special Issue on Autonomous Driving an Driver Assistance Systems. In Robotics and Autonomous Systems Journal, Vol. 91, pp. 208–209.
|
|
|
Angel D. Sappa, Cristhian A. Aguilera, Juan A. Carvajal Ayala, Miguel Oliveira, Dennis Romero, Boris X. Vintimilla, et al. (2016). Monocular visual odometry: a cross-spectral image fusion based approach. Robotics and Autonomous Systems Journal, Vol. 86, pp. 26–36.
Abstract: This manuscript evaluates the usage of fused cross-spectral images in a monocular visual odometry approach. Fused images are obtained through a Discrete Wavelet Transform (DWT) scheme, where the best setup is em- pirically obtained by means of a mutual information based evaluation met- ric. The objective is to have a exible scheme where fusion parameters are adapted according to the characteristics of the given images. Visual odom- etry is computed from the fused monocular images using an off the shelf approach. Experimental results using data sets obtained with two different platforms are presented. Additionally, comparison with a previous approach as well as with monocular-visible/infrared spectra are also provided showing the advantages of the proposed scheme.
|
|
|
Miguel Oliveira, Vítor Santos, Angel D. Sappa, Paulo Dias, & A. Paulo Moreira. (2016). Incremental Texture Mapping for Autonomous Driving. Robotics and Autonomous Systems Journal, Vol. 84, pp. 113–128.
Abstract: Autonomous vehicles have a large number of on-board sensors, not only for providing coverage all around the vehicle, but also to ensure multi-modality in the observation of the scene. Because of this, it is not trivial to come up with a single, unique representation that feeds from the data given by all these sensors. We propose an algorithm which is capable of mapping texture collected from vision based sensors onto a geometric description of the scenario constructed from data provided by 3D sensors. The algorithm uses a constrained Delaunay triangulation to produce a mesh which is updated using a specially devised sequence of operations. These enforce a partial configuration of the mesh that avoids bad quality textures and ensures that there are no gaps in the texture. Results show that this algorithm is capable of producing fine quality textures.
|
|
|
Miguel Oliveira, Vítor Santos, Angel D. Sappa, Paulo Dias, & A. Paulo Moreira. (2016). Incremental Scenario Representations for Autonomous Driving using Geometric Polygonal Primitives. Robotics and Autonomous Systems Journal, Vol. 83, pp. 312–325.
Abstract: When an autonomous vehicle is traveling through some scenario it receives a continuous stream of sensor data. This sensor data arrives in an asynchronous fashion and often contains overlapping or redundant information. Thus, it is not trivial how a representation of the environment observed by the vehicle can be created and updated over time. This paper presents a novel methodology to compute an incremental 3D representation of a scenario from 3D range measurements. We propose to use macro scale polygonal primitives to model the scenario. This means that the representation of the scene is given as a list of large scale polygons that describe the geometric structure of the environment. Furthermore, we propose mechanisms designed to update the geometric polygonal primitives over time whenever fresh sensor data is collected. Results show that the approach is capable of producing accurate descriptions of the scene, and that it is computationally very efficient when compared to other reconstruction techniques.
|
|
|
Daniela Rato, M. O., Victor Santos, Manuel Gomes & Angel Sappa. (2022). A Sensor-to-Pattern Calibration Framework for Multi-Modal Industrial Collaborative Cells. Journal of Manufacturing Systems, Vol. 64, pp. 497–507.
|
|
|
Morocho-Cayamcela, M. E. & W. L. (2020). Lateral confinement of high-impedance surface-waves through reinforcement learning. Electronics Letters, Vol. 56(23, 12 November 2020), pp. 1262–1264.
Abstract: The authors present a model-free policy-based reinforcement learning
model that introduces perturbations on the pattern of a metasurface.
The objective is to learn a policy that changes the size of the
patches, and therefore the impedance in the sides of an artificially structured
material. The proposed iterative model assigns the highest reward
when the patch sizes allow the transmission along a constrained path
and penalties when the patch sizes make the surface wave radiate to
the sides of the metamaterial. After convergence, the proposed
model learns an optimal patch pattern that achieves lateral confinement
along the metasurface. Simulation results show that the proposed
learned-pattern can effectively guide the electromagnetic wave
through a metasurface, maintaining its instantaneous eigenstate when
the homogeneity is perturbed. Moreover, the pattern learned to
prevent reflections by changing the patch sizes adiabatically. The
reflection coefficient S1, 2 shows that most of the power gets transferred
from the source to the destination with the proposed design.
|
|
|
Ulises Gildardo Quiroz Antúnez, A. I. M. R., María Fernanda Calderón Vega, Adán Guillermo Ramírez García. (2022). APTITUDE OF COFFEE (COFFEA ARABICA L.) AND CACAO (THEOBROMA CACAO L.) CROPS CONSIDERING CLIMATE CHANGE. Granja, Vol. 36(Issue 2).
|
|
|
Ortiz J., Londono J., Novillo F., Ampuno A., & Chávez M. (2015). Determinación de Invariantes en Grandes Centros de Datos basados en Topología Fat-Tree. Revista Politécnica, Vol. 35, pp. 91–96.
Abstract: Durante los últimos años ha existido un fuerte incremento en el acceso a internet, causando que los centros de datos ( DC) deban adaptar dinámicamente su infraestructura de red de cara a enfrentar posibles problemas de congestión, la cual no siempre se da de forma oportuna. Ante esto, nuevas topologías de red se han propuesto en los últimos años, como una forma de brindar mejores condiciones para el manejo de tráfico interno, sin embargo es común que para el estudio de estas mejoras, se necesite recrear el comportamiento de un verdadero DC en modelos de simulación/emulación. Por lo tanto se vuelve esencial validar dichos modelos, de cara a obtener resultados coherentes con la realidad. Esta validación es posible por medio de la identificación de ciertas propiedades que se deducen a partir de las variables y los parámetros que describen la red, y que se mantienen en las topologías de los DC para diversos escenarios y/o configuraciones. Estas propiedades, conocidas como invariantes, son una expresión del funcionamiento de la red en ambientes reales, como por ejemplo la ruta más larga entre dos nodos o el número de enlaces mínimo que deben fallar antes de una pérdida de conectividad en alguno de los nodos de la red. En el presente trabajo se realiza la identificación, formulación y comprobación de dos invariantes para la topología Fat-Tree, utilizando como software emulador a mininet. Las conclusiones muestran resultados concordantes entre lo analítico y lo práctico.
|
|
|
Dennys Paillacho, F. Novillo, W. Agila., & V. Huilcapi. (2015). Impacto de las redes de comunicaciones en los Sistemas Robóticos de Control. Revista Politécnica, Vol. 35, pp. 97–102.
Abstract: El análisis de incidencia que tienen las redes de comunicaciones sobre el comportamiento de los sistemas robóticos de control en red muestra grandes dificultades cuando se quieren hacer evaluaciones de tipo analítico. Por tal razón, en este trabajo un análisis que utiliza una aproximación basada en simulación es propuesto, de manera que el comportamiento temporal y espacial de un sistema robótico de control en red pueda ser evaluado. Para tal efecto, se propone un entorno de validación mediante el cual una red de comunicaciones permita distribuir mensajes de control entre el controlador principal y los controladores remotos ubicados en cada articulación angular del robot manipulador planar. Las interacciones entre los componentes del sistema han sido modeladas mediante un sistema de capas. Dicho modelo es llevado a un entorno de simulación con la finalidad de analizar el impacto de distintos parámetros de comunicaciones (i.e. tipo de red, tasa de datos y tamaño de datos) sobre el ciclo de comunicación y el error de seguimiento de trayectoria en un sistema robótico.
|
|