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The authors present a model-free policy-based reinforcement learning
model that introduces perturbations on the pattern of a metasurface.
The objective is to learn a policy that changes the size of the
patches, and therefore the impedance in the sides of an artificially struc-
tured material. The proposed iterative model assigns the highest reward
when the patch sizes allow the transmission along a constrained path
and penalties when the patch sizes make the surface wave radiate to
the sides of the metamaterial. After convergence, the proposed
model learns an optimal patch pattern that achieves lateral confinement
along the metasurface. Simulation results show that the proposed
learned-pattern can effectively guide the electromagnetic wave
through a metasurface, maintaining its instantaneous eigenstate when
the homogeneity is perturbed. Moreover, the pattern learned to
prevent reflections by changing the patch sizes adiabatically. The
reflection coefficient S1, 2 shows that most of the power gets transferred
from the source to the destination with the proposed design.
Introduction: Metasurfaces can be engineered to contain surface waves
(SWs) in a homogeneous path, where patches of sub-wavelength size are
engraved on a high-frequency grounded laminate [1]. SW waveguides
(SWGs) are characterised for propagating SWs along a confined path
without radiation [2]. To avoid losses due to propagation in undesirable
directions, dissimilar patch sizes representing different values of
refractive-index are required. These metasurfaces are formed by
highly subwavelength inclusions embedded in a host medium, leading
to homogenised permittivity and permeability values not available in
nature. Specifically, to achieve surface guiding, a negative refractive
index is of interest. These inexpensive surfaces are engineered to have
high performance with low-loss and low-dispersion. The effect of
perturbing the homogeneity of the patches has been exploited to
design planar lenses and leaky-wave antennas [3]. Among the emerging
technologies for future 5G/B5G networks, the potential of SWG has
been pointed by several authors to create extremely large aperture
arrays, capable of trap, guide, and leak signals [4, 5]
In this paper, we focus on the task of guiding SW in a metamaterial

along a confined path. For this effect, we propose to (i) design a meta-
surface with uniform patches to trap the wave along the surface.
(ii) Alter the uniformity of the patches according to a policy that
assigns a reward when the signal is transmitted from the desired
source to the desired destination, and a penalty when the signal
propagates to the sides. Our model-free policy-based reinforcement
learning (RL) method, enables to learn an optimal design for an SWG
by maximising the reward iteratively.

High-impedance metasurface design: To produce a high-impedance
surface on a high-frequency material, a periodical grid of perfectly elec-
tric conductor made by an array of patches with equal width and length,
have to be etched on one of the faces of the printed circuit board. We
first design the metasurface for a required attenuation constant az,
which fixes the value of lp, D, w and the surface impedance Xs.
Fig. 1a illustrates a single patch with periodicity D, patch length lp,
gap of w = D− lp, height of substrate h′, height of metallic patch hp,
and height of the ground conductor hg.

We adopt the design constraints of D = l/10 and w = D/10,
according to the results obtained in [6] for 10 GHZ high-impedance
metasurfaces. The high-frequency laminate used for the design is
Rogers RT/Duroid 5880, which has a relative permittivity er = 2.20,
dissipation factor tan d = 9× 10−4, laminate height h′ = 1.54 and
metal height hp = 0.07. Using neq =

�������������
1+ (az/k)

2
√
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k = 2p/l, we estimate the value of the equivalent refractive index
neq, where k is the wavenumber. From here, Xs can be obtained from
neq =
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as the characteristic

impedance in free space (FS), estimated as the square root of the rate
of the permeability of FS (Henrys/m) to the permittivity of FS
(Farads/m). For a dielectric dependant value d in the metasurface, one
can solve (1) for d and obtain a value in function of the az

Xs(w, kt) = zkz1 tan (h′kz1)
ker − k(er + 1)dkz1 tan (h′kz1)

, (1)
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where d can be expressed as d = (D/p) ln [1/ sin pw/2D
( )

]. The value
of d, is used to calculate the gap w, in function of neq with
w = (2D/p) arcsin (1/ exp (dp/D)) [7]. From here, the values of d, kz,
and Xs can be derived. These values trap the SW in the metasurface,
but they also determine a fixed size for the patches as well as the gap
between them.
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Fig. 1 Metamaterial structure, applicability, and RL model

a Dimensions of the metallic unit-cell patch on a high-frequency grounded
laminate
b Wireless environment showing an application of metamaterial SWGs
c Agent takes an action At on the environment and receives a reward Rt+1 at state
St+1

RL-based lateral confinement: For a grid of patches to be considered an
SWG, the metasurface must guide the SW along a constrained path
formed by a variable-impedance patch array. Fig. 1b shows a potential
application of SWG in a wireless environment (assuming beamforming
leaky-wave antennas and coupling in the corners). We propose to
confine the SW in-homogeneous tapered metasurface reactance by alter-
ing the value of lp in the patches. We introduce a differential value Dlp
and update the value lp � lp + Dlp , with lp ≤ D− w. For training our
model, a standard WG16 waveguide port (S1) is used as excitation with
a frequency range of 10 GHz ( Fig. 1c). To ensure the matching between
the SWG and the radiation port structures, we set the alteration over
distances of the order of a guided wavelength in width, so one mode
blends into the next without suffering reflections. An agent can take
one action a [ At = {lp � lp + Dlp , lp � lp − Dlp } to change the size
of each patch in the metasurface. The EM-wave is trapped in the meta-
material environment and propagates in all directions, receiving a
reward Rt at state St . To achieve lateral confinement, the total reward
is defined as the sum of the rewards in the waveguides L1, L2 and
S2, as follows:

R = r− for reaching lateral waveguides(L1, L2),

r+ for reaching the goalwaveguide (S2),

{
(2)

with r− ≪ r+. The agent learns an optimal value for Dlp for every patch
in the metasurface matrix M by maximising the cumulative reward. For
the following iterations, the agent receives a reward Rt+1 and the state
changes to St+1. If we let the mathematical problem be represented as
a Markov decision process, we can describe the task with a set of
actions A, a set of states S, a matrix with the transition probability P
and the set of rewards R. For every iteration t, the agent observes the
state st before taking an action at . Next, the state shifts into st+1 and
the agent gets a reward Rt . We iterate the later process (i.e. observing
the state st , taking an action at , and receiving a reward Rt), until our
agent maximises the cumulative sum of rewards over a period of
. 56 No. 23 pp. 1262–1264



time t. This maximisation formulates an optimal patch design policy
p(st) [ A [8]. In our patch design model, the maximisation of the
cumulative reward implies the minimisation of the propagation of the
SW to the sides of the metasurface. We define a state-value function
(3) that evaluates the value of a certain metasurface patters state,
under the design policy p as follows:

Vp(s) = E
∑1
t=0

gtR(st , p(st))|s0 = s

[ ]
, (3)

where E[ · ] represents the expectation operator and g [ [0, 1) is a
discount factor. Therefore, the optimal SWG design policy p∗, can be
obtained following the Bellman’s optimality criterion as follows:

V ∗(s) = max
a[A

[R(s, a)+ g
∑
s′

Ps, a(s
′)V (s′)], (4)

where the transition probability from s to s′ when action a is taken, is
represented as Ps, a(s′). Our proposal estimates this value Ps, a(s′) that
changes the patch sizes as a Q-learning task [9]. For the SWG design
policy p, the Q-value that maps the dimension-state of each row of
patches to the action of increasing or reducing its size (s,a), is defined
as the expected discounted reward of taking the action a in the
per-row dimension state s, according to the design policy p (5). In the
same way, the optimal Q-value Q

∗
(6), can be estimated if we ponder

the optimal value V
∗
(s′). By setting (6), the value of V ∗(s) can be

superseded by maxa[A Q∗(s, a) (7).

Qp(s, a) = R(s, a)+ g
∑
s′

Ps, a(s
′)Vp(s′), (5)

Q
∗
(s, a) = R(s, a)+ g

∑
s′

Ps, a(s
′)V

∗
(s′), (6)

As reported by [10], with a learning rate of a the Q-values can be
expressed as

Qt+1(s, a) =Qt(s, a)+ a(R(s, a))

+ a gmax
a′[A

Qt(s
′, a′)− Qt(s, a)

( )
.

(7)

The agent learns the optimal Q-values by iterating over (7),
obtaining the state st , receiving the reward Rt as expressed in (2), and
changing the patch size of every row by selecting the associated
action at at each time t. The convergence of the iteration (7) produces
an optimal value V ∗ and an optimal SWG design policy p∗. We
assume a e-greedy strategy to determine an action for every iteration.
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Fig. 2 Magnetic field of the uniform patch model, and the proposed SWG
structure

a Uniform patch structure, with D = l/10 and w = D/10
b Magnetic field of the uniform structure showing uncontrolled propagation
c SWG designed with the proposed model-free policy-based model
d Lateral confinement of the magnetic field from the proposed design
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Results and performance evaluation: Fig. 2a illustrates the uniform struc-
ture metasurface and Fig. 2b shows that the structure traps the SW on its
surface, but it propagates in all undesired directions without control.
Furthermore, the reflections of the SW on the edges of the artificeially
structured surface generates standing waves and destructive reflections.
Fig. 2d shows the constrained pattern learned from the proposed policy-
based system. Fig. 2d, confirms that our RL-based design confines the
electromagnetic waves laterally, and guide the SWs along the constrained
path for the designed frequency of 10 GHz, Fig. 3 proves a metasurface
based on a uniform patch array fails a port-to-port power transfer test,
while the proposed RL-based metasurface effectively transfers the
power from port 1 to port 2. The learned design maintains the instan-
taneous eigenstate of the metasurface when the homogeneity is perturbed,
that is, the gap between patches change gradually following the adiabatic
theorem. The complexity of the value-iteration algorithm in the
Q-learning problem is O(en), where e represents the total number of
actions and n is the size of the state space [11].
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Fig. 3 The plot of S-Parameters showing the reflection coefficients from
excitation ports S1 to the goal port S2, for a uniform array metasurface,
and the proposed RL-based pattern

Conclusions: Simulations revealed that our design improved the SW
transmission by 15 dB compared with a metamaterial with equal patch
size. Our model-free policy-based model learned to gradually alter the
pattern of the patch sizes to achieve a refractive index that contains
the propagation of the SW in undesirable directions. Further work
that can be engineered from this analysis includes the design of reconfi-
gurable metasurfaces, software-defined metasurfaces, metasurface
planar lenses, metamaterial cloaks and transformation optic devices.
Nevertheless, there are still challenges that need to be addressed in the
future like the complexity introduced, the interpretability of results
and the time required to train the model.
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