toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Jorge Alvarez; Mireya Zapata; Dennys Paillacho pdf  openurl
  Title Mechanical Design of a spatial mechanism for the robot head movements in social robotics for the evaluation of Human-Robot Interaction. Type Conference Article
  Year 2019 Publication 2nd International Conference on Human Systems Engineering and Design: Future Trends and Applications (IHSED 2019); Munich, Alemania Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract (up)  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number gtsi @ user @ Serial 104  
Permanent link to this record
 

 
Author Stalin Francis Quinde pdf  openurl
  Title Un nuevo modelo BM3D-RNCA para mejorar la estimación de la imagen libre de ruido producida por el método BM3D. (Ph.D. Angel Sappa, Director.). M.Sc. thesis Type Book Chapter
  Year 2019 Publication Ediciones FIEC-ESPOL Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract (up)  
  Address  
  Corporate Author Ph.D. Angel Sappa, Director. Thesis Master's thesis  
  Publisher Place of Publication Editor  
  Language Español Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number gtsi @ user @ Serial 117  
Permanent link to this record
 

 
Author Shendry Rosero Vásquez pdf  openurl
  Title Reconocimiento facial: técnicas tradicionales y técnicas de aprendizaje profundo, un análisis. (Ph.D. Angel Sappa, Director & Ph.D. Boris Vintimilla, Codirector.). M.Sc. thesis Type Book Chapter
  Year 2019 Publication Ediciones FIEC-ESPOL Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract (up)  
  Address  
  Corporate Author Ph.D. Angel Sappa, Director de tesis & Ph.D. Boris Vintimilla, Codirector Thesis Master's thesis  
  Publisher Place of Publication Editor  
  Language Español Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number gtsi @ user @ Serial 114  
Permanent link to this record
 

 
Author Santos V.; Angel D. Sappa.; Oliveira M. & de la Escalera A. pdf  openurl
  Title Special Issue on Autonomous Driving and Driver Assistance Systems Type Journal Article
  Year 2019 Publication In Robotics and Autonomous Systems Abbreviated Journal  
  Volume Vol. 121 Issue Pages  
  Keywords  
  Abstract (up)  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number gtsi @ user @ Serial 119  
Permanent link to this record
 

 
Author G.A. Rubio; Wilton Agila pdf  openurl
  Title Sustainable Energy: A Strategic View of Fuel Cells Type Conference Article
  Year 2019 Publication 8th International Conference on Renewable Energy Research and Applications (ICRERA 2019); Brasov, Rumania Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract (up) Based on the model of the proton exchange fuel cell in a strategic context,

this document develops the issue of energy as one of the pillars to achieve the

sustainability of our planet, considering the future scenarios up to the year 2060 of the

situation energy, hydrogen as a strategic vector and the contribution of the fuel cell in

solving the serious problems of environmental pollution and economic inequity that

humanity faces; for its application in the energy generation, telecommunications and

vehicle manufacturing industries.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number gtsi @ user @ Serial 110  
Permanent link to this record
 

 
Author Patricia L. Suarez; Angel D. Sappa; Boris X. Vintimilla pdf  openurl
  Title Image patch similarity through a meta-learning metric based approach Type Conference Article
  Year 2019 Publication 15th International Conference on Signal Image Technology & Internet based Systems (SITIS 2019); Sorrento, Italia Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract (up) Comparing images regions are one of the core methods used on computer vision for tasks like image classification, scene understanding, object detection and recognition. Hence, this paper proposes a novel approach to determine similarity of image regions (patches), in order to obtain the best representation of image patches. This problem has been studied by many researchers presenting different approaches, however, the ability to find the better criteria to measure the similarity on image regions are still a challenge. The present work tackles this problem using a few-shot metric based meta-learning framework able to compare image regions and determining a similarity measure to decide if there is similarity between the compared patches. Our model is training end-to-end from scratch. Experimental results

have shown that the proposed approach effectively estimates the similarity of the patches and, comparing it with the state of the art approaches, shows better results.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number gtsi @ user @ Serial 115  
Permanent link to this record
 

 
Author Roberto Jacome Galarza; Miguel-Andrés Realpe-Robalino; Chamba-Eras LuisAntonio; Viñán-Ludeña MarlonSantiago and Sinche-Freire Javier-Francisco pdf  openurl
  Title Computer vision for image understanding. A comprehensive review Type Conference Article
  Year 2019 Publication International Conference on Advances in Emerging Trends and Technologies (ICAETT 2019); Quito, Ecuador Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract (up) Computer Vision has its own Turing test: Can a machine describe the contents of an image or a video in the way a human being would do? In this paper, the progress of Deep Learning for image recognition is analyzed in order to know the answer to this question. In recent years, Deep Learning has increased considerably the precision rate of many tasks related to computer vision. Many datasets of labeled images are now available online, which leads to pre-trained models for many computer vision applications. In this work, we gather information of the latest techniques to perform image understanding and description. As a conclusion we obtained that the combination of Natural Language Processing (using Recurrent Neural Networks and Long Short-Term Memory) plus Image Understanding (using Convolutional Neural Networks) could bring new types of powerful and useful applications in which the computer will be able to answer questions about the content of images and videos. In order to build datasets of labeled images, we need a lot of work and most of the datasets are built using crowd work. These new applications have the potential to increase the human machine interaction to new levels of usability and user’s satisfaction.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number gtsi @ user @ Serial 97  
Permanent link to this record
 

 
Author Marjorie Chalen; Boris X. Vintimilla pdf  openurl
  Title Towards Action Prediction Applying Deep Learning Type Journal Article
  Year 2019 Publication Latin American Conference on Computational Intelligence (LA-CCI); Guayaquil, Ecuador; 11-15 Noviembre 2019 Abbreviated Journal  
  Volume Issue Pages  
  Keywords action prediction, early recognition, early detec- tion, action anticipation, cnn, deep learning, rnn, lstm.  
  Abstract (up) Considering the incremental development future action prediction by video analysis task of computer vision where it is done based upon incomplete action executions. Deep learning is playing an important role in this task framework. Thus, this paper describes recently techniques and pertinent datasets utilized in human action prediction task.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number cidis @ cidis @ Serial 129  
Permanent link to this record
 

 
Author Rafael E. Rivadeneira; Patricia L. Suarez; Angel D. Sappa; Boris X. Vintimilla. pdf  openurl
  Title Thermal Image SuperResolution through Deep Convolutional Neural Network. Type Conference Article
  Year 2019 Publication 16th International Conference on Image Analysis and Recognition (ICIAR 2019); Waterloo, Canadá Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract (up) Due to the lack of thermal image datasets, a new dataset has been acquired for proposed a superesolution approach using a Deep Convolution Neural Network schema. In order to achieve this image enhancement process a new thermal images dataset is used. Di?erent experiments have been carried out, ?rstly, the proposed architecture has been trained using only images of the visible spectrum, and later it has been trained with images of the thermal spectrum, the results showed that with the network trained with thermal images, better results are obtained in the process of enhancing the images, maintaining the image details and perspective. The thermal dataset is available at http://www.cidis.espol.edu.ec/es/dataset  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number gtsi @ user @ Serial 103  
Permanent link to this record
 

 
Author Miguel Realpe; Jonathan S. Paillacho Corredores; Joe Saverio & Allan Alarcon pdf  openurl
  Title Open Source system for identification of corn leaf chlorophyll contents based on multispectral images Type Conference Article
  Year 2019 Publication International Conference on Applied Technologies (ICAT 2019); Quito, Ecuador Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract (up) It is important for farmers to know the level of chlorophyll in plants since this depends on the treatment they should give to their crops. There are two common classic methods to get chlorophyll values: from laboratory analysis and electronic devices. Both methods obtain the chlorophyll level of one sample at a time, although they can be destructive. The objective of this research is to develop a system that allows obtaining the chlorophyll level of plants using images.

Python programming language and different libraries of that language were used to develop the solution. It was decided to implement an image labeling module, a simple linear regression and a prediction module. The first module was used to create a database that links the values of the images with those of chlorophyll, which was then used to obtain linear regression in order to determine the relationship between these variables. Finally, the linear

regression was used in the prediction system to obtain chlorophyll values from the images. The linear regression was trained with 92 images, obtaining a root-mean-square error of 7.27 SPAD units. While the testing was perform using 10 values getting a maximum error of 15.5%.

It is concluded that the system is appropriate for chlorophyll contents identification of corn leaves in field tests.

However, it can also be adapted for other measurement and crops. The system can be downloaded at github.com/JoeSvr95/NDVI-Checking [1].
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number gtsi @ user @ Serial 116  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: