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Abstract—Comparing images regions are one of the core meth-
ods used on computer vision for tasks like image classification,
scene understanding, object detection and recognition. Hence,
this paper proposes a novel approach to determine similarity of
image regions (patches), in order to obtain the best representation
of image patches. This problem has been studied by many re-
searchers presenting different approaches, however, the ability to
find the better criteria to measure the similarity on image regions
are still a challenge. The present work tackles this problem
using a few-shot metric based meta-learning framework able to
compare image regions and determining a similarity measure to
decide if there is similarity between the compared patches. Our
model is training end-to-end from scratch. Experimental results
have shown that the proposed approach effectively estimates the
similarity of the patches and, comparing it with the state of the
art approaches, shows better results.

Index Terms—meta-learning, metric based, Siamese Networks,
Convolutional networks

I. INTRODUCTION

One of the computer vision techniques that has always been
in constant research is the determination of the similarity of
the image regions, because it is the fundamental process of
many vision tasks such as object recognition, stereo vision,
image registration, image denoising, exemplar-based image
inpainting,

The ease with which humans can differentiate whether two
images are similar or not, is one of the challenges that still
remain in the field of computer vision, many of the traditional
techniques are based on encoding images into representation
vectors, for which it is necessary to take small regions of
the images to be compared and distance metrics, such as
the euclidean, are used to determine the correlation between
the regions of the images. Another applications that can be
derived from a good management of the regions of the images
is the edition of the same ones to modify the position of
objects, to make changes in the texture or any other adjustment
that is required to make in an image. Also, in the analysis
of medical images, techniques based on regions of images
(patches) are also observed in order to compare the similarity
of the images with the related databases already existing to
determine whether or not they are similar [1].

Another approach is learn a feature representation directly
from image data, to obtain a general similarity function
for comparing image patches. To formulate such a function,
various CNN-based model has been designed and trained to
support a wide variety of changes in image appearance [2].
Many factors could affect the comparing process of images,
such as occlusion, illumination, quality of sensors, etc., for
this reason multiples approaches could be developed, from
hand-craft methods to a deep learning, in order to obtain this
kind of information valid for high level vision problems like
object recognition, classification, super-resolution, surveillance
system, etc.

Several feature descriptors have been proposed last decades
to resolved many computer vision problems based on principal
characteristics of the images, descriptors like (e.g., SIFT
[3], SURF [4], KAZE [5], among the best known). Many
researchers have been working with image patches for spatial
analysis, for road detection and scene understanding, which
can be used for image labeling [6]; There are some others
methods based on image patch processing like a fast patch dic-
tionary for image recovery and sparsity-based image denoising
via dictionary learning and structural clustering [7], non-local
means methods for image denoising [8]. Other research have
been proposed a image-adaptive wavelet transform, to form a
multi-scale sparsifying global transform for the image [9].

The previous approaches have been developed using images
or patches from visible spectrum and with the lower prices
of cameras sensitive to several spectra, especially visible and
near infrared, being even available on smart devices, capturing
images of several spectra simultaneously makes it possible
to propose new architectures based on convolutional neural
network to learn visual similarities with success working on
images in the cross-spectral domain, this information of the
near infrared spectrum can help the processing of images
with low levels of illumination, or to improve the quality
of the images of the visible spectrum.(e.g., filtering [10],
enhancement [11]). The modeling of architectures that make
use of cross-spectral information is a difficult and challenging
task since it implies using such information efficiently and



effectively to solve a given problem that already exists in
the domain of the visible spectrum. For example, different
works have recently been proposed to describe and match
characteristic points in images in the cross spectral domain
based on classical approaches (e.g., [12], [13],[14], [15],
to mention a few). However, the results and performance
obtained with these techniques still require much improvement
to reach the yields achieved with the techniques using images
of the visible spectrum.

Some approaches have been developed in the cross-spectral
field that seek to propose architectures that can solve problems
of comparisons of image patches, which show better results
than traditional techniques or those implemented with CNN
networks but using only images of the visible spectrum (e.g.,
[16], [17]. However, lately, meta-learning techniques have
been proposed that allow you to generalize a model from few
data, which is very useful. Also, to use other sources of data
that are not labeled but plenty available, multimodal learning,
transfer learning, continual learning or domain adaptation.

For meta-learning, it is important that a specific transfor-
mation of a subset of features was useful for transfer of
knowledge, to obtain a distribution of patterns in the feature
space that share some characteristics that may be described
by a data model and easy to adapt to a new dataset of similar
type to increase the representation of the features to generate
a new one

As mentioned above, the main contribution of current work
is to reach to a better performance compared to [17] and
[16]. The rest of the paper is organized as follows. Section
II describes the most recent work on image patch similarity
learning. Section III presents the architecture proposed using
meta-learning approach using cross-spectral datasets. Section
IV depicts the experimental results and finally, conclusion are
presented in section V.

II. RELATED WORK

Several approaches for image patching similarity have been
proposed in last years, some techniques are proposed based on
mathematical theory, or using CCN networks. In [18] propose
a novel region-based active contour model via local patch
similarity measure for image segmentation. Using the spatial
constraints on local region-based models to construct a patch
similarity measure which balances the noise suppression and
the image details reservation. Another approach [19] propose
a novel deep similarity learning method that trains a binary
classifier to obtain the metric of the correspondence of two
image patches. The classification output is transformed to a
continuous probability value, then used as the similarity score,
for the comparison two commonly used metrics are presented:
normalised mutual information and local cross correlation.

Also, in [20] present an approach to learn data representa-
tions using an autoencoder for defect detection. However, the
texture (non-defect) area cannot be well reconstructed, which
makes the pixel-wise detection inaccurate, for this reason
explore similarities between different patches in the whole
test image, a novel autoencoder-based fabric defect detection

method is proposed. In order to maintain the texture area in
the reconstructed patch, the original encoded latent variable is
modified, and the cross-patch similarity is introduced for deter-
mining the modification function. In [21] present a technique
to perform registration of images of different nature using SAR
and optical images, using a neural network in order to build
feature point descriptors and then use RANSAC algorithm to
align found matches. Another approach [22] propose a deep
local descriptor learning framework for cross-modality face
recognition, to learn discriminant and compact local informa-
tion directly from raw facial patches. Also includes a novel
cross-modality enumeration loss to eliminate the modality gap
on local patch level. In [23] propose an approach to use
cross-spectral images to achieve a better performance with the
adaptive Harris corner detector, which means improving the
detection of characteristic points using cross-spectral images
(NIR, G, B) and applying pruning techniques, the combi-
nation of channels for this fusion is the one that generates
the largest variance based on the intensity of the merged
pixels, therefore, it is that which maximizes the entropy in
the resulting Cross-spectral images, with this technique the
obtained results are better than those achieved with images of
the visible spectra. Song et al. in [24] present an adversarial
discriminative feature learning framework to close the sensing
gap via adversarial learning on both raw-pixel space and
compact feature space. The approach integrates cross-spectral
face hallucination using generative adversarial networks and
discriminative feature learning into an end-to-end adversarial
network. In the feature space, an adversarial loss and a high-
order variance discrepancy loss are employed to measure
the global and local discrepancy between two heterogeneous
distributions respectively to enhance domain-invariant feature
learning and modality independent noise removing. In this
work [25], the authors propose a new approach to align two
images related by an unknown 2D homography where the local
descriptor is learned from scratch from the images and the
homography is estimated simultaneously. This technique uses
a siamese convolutional neural network optimize by a single
loss function. This method has been designed to align images
of different modalities such as RGB and near-infra-red (NIR)
without using any prior labeled data. In this paper [26], the
authors present a deep coupled learning approach to solve the
problem of matching polarimetric thermal face photos against
a gallery of visible spectrum faces. With the polarization
state information of thermal faces is possible to obtain the
missing textural and geometrics details in the thermal face
imagery which exist in visible spectrum. A coupled deep
neural network model has been designed which leverages
relatively large visible and thermal datasets to overcome the
problem of overfitting, also finds global discriminative features
in a nonlinear embedding space to relate the polarimetric
thermal faces to their corresponding visible faces.

III. PROPOSED APPROACH

One of the challenges posed by meta-learning techniques
is the design of a deep training model that using only a few



Fig. 1. Siamese General Schema implemented on the current research.

Fig. 2. Siamese General Schema implemented on the current research.

training data given the previous experience taken from very
similar learning tasks. This technique is known as learn from
few data shots, trying to simulate the human capacity to learn
from one or a few examples and what is proposed in this
work is to create an architecture that is capable of detecting
the similarity of patches of cross-spectral images, in our case
It has been proposed to generate a similarity metric based
solely on K − shotsinN −ways”, learning in which we are
given little training data (for example, images of certain classes
such as urban, oldbuildings, etc) to determine whether or not
similarity exists between the K classes with N data in each.

Once the model have been trained, the similarity metric
can deduce the pattern of the common characteristics that
represents the images evaluated by the meta-learning archi-
tecture optimized by the model parameters already obtained.
The model parameters have been designed to be shared and
its optimization model are :

θ∗ = argmin
θ

ED ∼p (C)[Lθ(C)] (1)

where θ∗ tries to optimize the model to obtain a semantic
embedding space based on few shot samples and labels ED ∼p
through the learning process to generate the representation

vectors and determine the patching similarity using the cor-
responding dataset D.

The proposed approach is based on a cross-spectral metric
based siamese network approach, see Fig. 2 that look for a
model capable of determine the similarity of the cross-spectral
image patches of five different pattern (field, mountain, indoor,
oldbuilding, urban) categorized separately, with 16 examples
in each class, having 50% of these examples with images of the
visible spectrum and the rest with images of the near infrared
spectrum, with a 8 samples on each class per spectra, for the
training process and for the test process there are three classes
not seen by the training process with 8 examples in each, of
which half are images of the visible spectrum and the rest are
of the near infrared spectrum.

The meta-learning model proposed in this work has been
designed to be trained over a variety of classes and at the
same time to obtain a good performance on the learning of
metric similarity of image patches. Being C the cross-spectral
dataset of all image patches of the all classes to be considered
in the training process to perform the learning similarity tasks
and optimized for the best accuracy. Each task is associated
with a cross-spectral dataset C, containing both patch images
representation and their corresponding labels.

Being IP1 and IP2 a pair of image patches from visible and
near infrared spectra respectively and let L being their corre-
sponding label; “0“ for a similar image patch pair class and
“1“ for a non similar image patch pair, including cross-spectral
image pairs existing in the training and test database. Let W
be the shared weights in the siamese network architecture, see
Fig. 1 which will be optimized incrementally as the proposed
model is generalized. Having a generator function Gw(ip)
instantiated by a Siamese architecture with a weight vector
W . Being the siamese net instantiated G(ip1) and Gw(ip2) to
obtain a embedding vector representation on each side of the
network to measure the distance between those embeddings
and determine the similarity of the patches feed it into the
network. This similarity function Gw(IP1, IP2) is defined as
:



Gw(IP1, IP2) = ‖G(ip1)−Gw(ip2)‖2, (2)

A. Instance Normalization

Deep learning is a technique that allow to learn multiple
levels of representation and abstraction to transform data
in order to resolve an specific problem. Many researches
with deep learning are focusing on developing techniques to
stabilize training. Thus, some architectures are known to be
unstable (during training) and very sensitive to changes over
the hyper-parameter values of the model. Another field of
analysis has emerged around the style of an image evaluated
by the statistics of convolutional neural network filters, a
renewed interest in the texture generation and image stylization
problems to obtain qualitative improvement in the generated
image.

Ulyanov et al. [27] shows that it is possible to apply a
method named Instance Normalization over the data of the
model for a better stylization and texture synthesis, that derive
entropy loss which improves samples diversity. This method
prevents instance-specific mean and covariance shift simplify-
ing the learning process. The instance normalization layer is
applied at test time as well as at training time. According to
[27] the generator network should discard contrast information
in the content image to learn a highly nonlinear contrast
normalization function as a combination of such layers. Let x
∈ RNCWH an input tensor containing a batch of N images,
where C, W and H are the depth, width and high respectively
of the tensor and let xtijk denote its tijk-th element of t tensor,
where k and j span spatial dimensions, i is the feature channel
(in the case of an RGB image being used as an input, it would
represent a color channel). Thus, a simple version of instance
normalization is defined as:

ytijk =
xtijk∑W

l=1

∑H
m=1 xtilm

. (3)

A small change in the stylization architecture proposed
by [27] presents a qualitative improvement in the generated
embedding vector. The change is limited to swapping batch
normalization with instance normalization, and to apply the
latter both at training and testing times. The resulting method
can be used to train high-performance architectures for real-
time embedded vector generation. Our architecture uses this
normalization, applied in feed-forward style transformation,
to improve the quality of the embedded feature representation
generated by the model.

B. Contrastive Loss

To be able to differentiate if the images that are fed to the
model are similar or not, a representation of smaller size must
be obtained that conserves the information of the structure
and semantics of the image, for which the contrastive loss
based on a maximum margin has been used previously defined.
According to [28] a meaningful mapping from high to low
dimensional space maps similar input vectors to nearby points

Algorithm 1 Image Patch Similarity for country, urban and
indoor classes; i, j are the number image patches per category
epochs is the number of iterations for training process; n is
the number of images per batch;t is the number of images of
the training dataset.

for Number image patches in training set
(t),

−→
IP1 do

Determine
−→
IP2 pair from the complete sample training

set: S−→
IP

where
−−→
{IP1}ti=1 are similar

−−→
{IP2}tj=1 and calcu-

lating their corresponding label, Yij , so that Yij = 0 when−−→
{IP1}ti=1 =

−−→
{IP2}tj=1 and Yij = 1 otherwise.

end for
for epochs steps do

for n batch steps do
Initialize network weights
Instance the architecture of the Siamese network
Contrastive loss calculation
Neural Net Optimization
Contrastive loss calculation, by minimization

end for
Fine-tuning weights of the net based on the error rate

end for

on the output manifold and dissimilar vectors to distant points.
This loss function whose minimization runs over pairs of
samples. Let

−→
X1,
−→
X2 ∈ I a set of images, be a pair of input

vectors shown to the system. Let Y be a binary label assigned
to this pair. Y = 0 if

−→
X1, and

−→
X2 are similar, and Y = 1 if

they are dissimilar. Define the parameterized distance function
to be learned DW between

−→
X1,
−→
X2 as the euclidean distance

between the outputs of GW . This loss is defined as:

L(W) =

P∑
m=1

(L,W (Y,
−→
X1,
−→
X2)

i) (4)

Applying this loss to our model, where the image pairs are
the image patches of visible and near infrared spectra. It is
defined as :

(L,W (Y,
−→
X1,
−→
X2)

i) = (1− Y )
1

2
(DW )2 + (5)

(Y )
1

2
(max(0,m−DW )

2

IV. EXPERIMENTS RESULTS

A. Results and comparisons

To check the proposed 8-shot 1-way” meta-learning metric
based network model, the cross-spectral data set of cite
brown2011multi has been used (in Fig. Ref fig: some ex-
amples of the data some examples of pairs of some are
presented categories of images). This data set consists of
477 registered images classified in 9 groups captured in
RGB (visible spectrum) and NIR (near infrared). To make
the comparison with the previous approaches [17] and [16]



Descriptor-Network Country Indoor Oldbuilding Urban

SIFT[3] 46.6 12.4 21.3 13.27
2ch Network (from [17]) 0.23 4.4 2.3 1.58
2ch Network (from [16]) 0.27 3.3 3.4 4.6

Metric Based Network (cross-spectral proposed) 0.22 3.1 2.2 1.63

TABLE I
EVALUATIONS (FPR95%) ON CROSS-SPECTRAL IMAGE PATCH DATASETS [29] FROM DIFFERENT CATEGORIES (THE SMALLER THE BETTER, BOLD FACES

CORRESPOND TO THE BEST RESULTS IN THAT CATEGORY).

Descriptor-Network Country Indoor Oldbuilding Urban

Metric Based Network (cross-spectral proposed) 0.22 3.1 2.2 1.63
Metric Based Network (Visible only proposed) 0.17 1.6 1.9 1.21

Metric Based Network (Near infrared only proposed) 0.19 2.6 1.6 1.43

TABLE II
EVALUATIONS (FPR95%) ON VISIBLE AND NEAR INFRARED IMAGE PATCH DATASETS EVALUATED SEPARATELY [29] FROM DIFFERENT CATEGORIES

(THE SMALLER THE BETTER, BOLD FACES CORRESPOND TO THE BEST RESULTS IN THAT CATEGORY).

the images of the category ”Country” have been used for
training. For the experiments (8 pairs of randomly selected
images from visible and near infared has been selected).
These images are the most affected in lighting conditions and
variable textures, which directly affects the complexity of the
process of establishing their similarity through the detection of
characteristic points and, therefore, are the most challenging
scenarios for the training process. First, the characteristic
points of patches of the visible spectrum images have been
obtained using the SIFT algorithm, to search these points in
their corresponding on the near infrared spectrum images. To
carry out the experiments, 64 times 64 pixels patches have
been generated centered on the previously detected points in
both the visible and near infrared spectrum images, since the
images are perfectly aligned, then the corresponding patches
are extracted with the previously defined size. For training,
a total of 16 perfectly balanced cross-spectral image patches
(matched and not matched) have been prepared for each
category, It have been used Adam optimizer with a learning
rate of 0.0002, with a stochastic gradient descent, minimizing
the contrastive loss to converge the model.

Once the meta-learning metric based model has been trained
with images from the ”Country” category, it has been evalu-
ated with other categories cross-spectral in addition to those
of images from the ”Country” category together with other
categories. Thus, 8 pairs from each of the following categories
have been selected: ”Country”, ”Indoor”, ”Olbuilding” and
”Urban” respectively. The results obtained from this evaluation
were compared with those obtained with a classical feature
descriptor (SIFT) to highlight the improvements in perfor-
mance reached with the proposed approach. The FPR95% rate,
which is the ratio between the number of negative coincidences
wrongly categorized as positive (false positives) and the total
number of actual negative coincidences (regardless of classifi-
cation), is used to measures the obtained results. Additionally,
these values have been compared with the ones presented in
[17] and [16]. It can be used to evaluate results from the
same categories, Table I shows the obtained performances. As

expected, it can be appreciated the large improvements reached
with respect to SIFT. Additionally, it can be appreciated also
a better results than those presented in [17] and [16], actually,
only in the ”Urban” category previous approaches remain a
bit better than the ones obtained in our approach. Also we
have evaluated our model to validate the similarity between
only visible and near infrared image patches separately, just
to show that our model is able to measure similarity without
having to train the model again showing that it is adaptable to
various measurement tasks. the results are shown in the Table
II

V. CONCLUSION

This research paper addresses the challenging problem of
measuring the similarity of images belonging to different
categories and to different spectra, for this case, visible and
near infrared, for which, a metric-based meta-appendix model
has been used, which allow the model to learn categories of
objects from few examples, and at a rapid pace, trying to
simulate the learning that humans do and that fundamentally
does not depend on a great computational power, but that the
designed architecture is able to synthesize in a way Efficient
and effective an embedded representation that allows learning
new classes from existing information on different classes
previously learned.

The results show that it is possible even with a few show
samples to obtain a performance quite similar to the state of
the art, as well as it is shown that outperforms classical SIFT
feature based descriptors. As a future work other architectures
and normalization techniques will be considered for improving
results. As a work in progress, we have been working on the
design of a meta-learning model based on a matching network
for the classification of volcanic stone samples.

ACKNOWLEDGMENT

This work has been partially supported by: the ESPOL
project PRAIM (FIEC-09-2015); the Spanish Government
under Projects TIN2014-56919-C3-2-R and TIN2017-89723-
P; and the “CERCA Programme / Generalitat de Catalunya”.



(a) (b)

Fig. 3. Cross-spectral pairs of images obtained from [29]: (a) visible images;
(b) NIR images.

The authors gratefully acknowledge the support of the CYTED
Network: “Ibero-American Thematic Network on ICT Ap-
plications for Smart Cities” (REF-518RT0559). The authors
would also like to thank NVIDIA for GPU donations.

REFERENCES

[1] G. Wu, B. C. Munsell, Y. Zhan, W. Bai, G. Sanroma, and P. Coupé,
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