toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Rafael E. Rivadeneira, Angel Domingo Sappa, Vintimilla B. X. and Hammoud R. url  openurl
  Title A Novel Domain Transfer-Based Approach for Unsupervised Thermal Image Super- Resolution. Type Journal Article
  Year 2022 Publication In Sensors. Abbreviated Journal In Sensors  
  Volume Vol. 22 Issue (down) Issue 6 Pages Article number 2254  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number cidis @ cidis @ Serial 170  
Permanent link to this record
 

 
Author Morocho-Cayamcela, M.E. & W. Lim pdf  openurl
  Title Lateral confinement of high-impedance surface-waves through reinforcement learning Type Journal Article
  Year 2020 Publication Electronics Letters Abbreviated Journal  
  Volume 56 Issue (down) 23, 12 November 2020 Pages 1262-1264  
  Keywords  
  Abstract The authors present a model-free policy-based reinforcement learning

model that introduces perturbations on the pattern of a metasurface.

The objective is to learn a policy that changes the size of the

patches, and therefore the impedance in the sides of an artificially structured

material. The proposed iterative model assigns the highest reward

when the patch sizes allow the transmission along a constrained path

and penalties when the patch sizes make the surface wave radiate to

the sides of the metamaterial. After convergence, the proposed

model learns an optimal patch pattern that achieves lateral confinement

along the metasurface. Simulation results show that the proposed

learned-pattern can effectively guide the electromagnetic wave

through a metasurface, maintaining its instantaneous eigenstate when

the homogeneity is perturbed. Moreover, the pattern learned to

prevent reflections by changing the patch sizes adiabatically. The

reflection coefficient S1, 2 shows that most of the power gets transferred

from the source to the destination with the proposed design.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number cidis @ cidis @ Serial 139  
Permanent link to this record
 

 
Author Ulises Gildardo Quiroz Antúnez, Alejandro Ismael Monterroso Rivas, María Fernanda Calderón Vega, Adán Guillermo Ramírez García pdf  openurl
  Title APTITUDE OF COFFEE (COFFEA ARABICA L.) AND CACAO (THEOBROMA CACAO L.) CROPS CONSIDERING CLIMATE CHANGE Type Journal Article
  Year 2022 Publication Granja Abbreviated Journal  
  Volume 36 Issue (down) 2 Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number cidis @ cidis @ Serial 200  
Permanent link to this record
 

 
Author Ángel Morera, Ángel Sánchez, A. Belén Moreno, Angel D. Sappa, & José F. Vélez pdf  isbn
openurl 
  Title SSD vs. YOLO for Detection of Outdoor Urban Advertising Panels under Multiple Variabilities. Type Journal Article
  Year 2020 Publication Abbreviated Journal In Sensors  
  Volume Vol. 2020-August Issue (down) 16 Pages pp. 1-23  
  Keywords object detection; urban outdoor panels; one-stage detectors; Single Shot MultiBox Detector (SSD); You Only Look Once (YOLO); detection metrics; object and scene imaging variabilities  
  Abstract This work compares Single Shot MultiBox Detector (SSD) and You Only Look Once (YOLO)

deep neural networks for the outdoor advertisement panel detection problem by handling multiple

and combined variabilities in the scenes. Publicity panel detection in images o ers important

advantages both in the real world as well as in the virtual one. For example, applications like Google

Street View can be used for Internet publicity and when detecting these ads panels in images, it could

be possible to replace the publicity appearing inside the panels by another from a funding company.

In our experiments, both SSD and YOLO detectors have produced acceptable results under variable

sizes of panels, illumination conditions, viewing perspectives, partial occlusion of panels, complex

background and multiple panels in scenes. Due to the diculty of finding annotated images for the

considered problem, we created our own dataset for conducting the experiments. The major strength

of the SSD model was the almost elimination of False Positive (FP) cases, situation that is preferable

when the publicity contained inside the panel is analyzed after detecting them. On the other side,

YOLO produced better panel localization results detecting a higher number of True Positive (TP)

panels with a higher accuracy. Finally, a comparison of the two analyzed object detection models

with di erent types of semantic segmentation networks and using the same evaluation metrics is

also included.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 14248220 Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number cidis @ cidis @ Serial 133  
Permanent link to this record
 

 
Author Cristhian A. Aguilera, Cristhian Aguilera, Cristóbal A. Navarro, & Angel D. Sappa pdf  openurl
  Title Fast CNN Stereo Depth Estimation through Embedded GPU Devices Type Journal Article
  Year 2020 Publication Sensors 2020 Abbreviated Journal  
  Volume Vol. 2020-June Issue (down) 11 Pages pp. 1-13  
  Keywords stereo matching; deep learning; embedded GPU  
  Abstract Current CNN-based stereo depth estimation models can barely run under real-time

constraints on embedded graphic processing unit (GPU) devices. Moreover, state-of-the-art

evaluations usually do not consider model optimization techniques, being that it is unknown what is

the current potential on embedded GPU devices. In this work, we evaluate two state-of-the-art models

on three different embedded GPU devices, with and without optimization methods, presenting

performance results that illustrate the actual capabilities of embedded GPU devices for stereo depth

estimation. More importantly, based on our evaluation, we propose the use of a U-Net like architecture

for postprocessing the cost-volume, instead of a typical sequence of 3D convolutions, drastically

augmenting the runtime speed of current models. In our experiments, we achieve real-time inference

speed, in the range of 5–32 ms, for 1216  368 input stereo images on the Jetson TX2, Jetson Xavier,

and Jetson Nano embedded devices.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 14248220 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number cidis @ cidis @ Serial 132  
Permanent link to this record
 

 
Author Cristhian A. Aguilera; Cristhian Aguilera; Angel D. Sappa pdf  openurl
  Title Melamine faced panels defect classification beyond the visible spectrum. Type Journal Article
  Year 2018 Publication In Sensors 2018 Abbreviated Journal  
  Volume Issue (down) Pages  
  Keywords  
  Abstract In this work, we explore the use of images from different spectral bands to classify defects in melamine faced panels, which could appear through the production process. Through experimental evaluation, we evaluate the use of images from the visible (VS), near-infrared (NIR), and long wavelength infrared (LWIR), to classify the defects using a feature descriptor learning approach together with a support vector machine classifier. Two descriptors were evaluated, Extended Local Binary Patterns (E-LBP) and SURF using a Bag of Words (BoW) representation. The evaluation was carried on with an image set obtained during this work, which contained five different defect categories that currently occurs in the industry. Results show that using images from beyond

the visual spectrum helps to improve classification performance in contrast with a single visible spectrum solution.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number gtsi @ user @ Serial 89  
Permanent link to this record
 

 
Author Juan A. Carvajal; Dennis G. Romero; Angel D. Sappa pdf  openurl
  Title Fine-tuning deep convolutional networks for lepidopterous genus recognition Type Journal Article
  Year 2017 Publication Lecture Notes in Computer Science Abbreviated Journal  
  Volume Issue (down) Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number gtsi @ user @ Serial 63  
Permanent link to this record
 

 
Author Cristhian A. Aguilera; Angel D. Sappa; Ricardo Toledo pdf  openurl
  Title Cross-Spectral Local Descriptors via Quadruplet Network Type Journal Article
  Year 2017 Publication In Sensors Journal Abbreviated Journal  
  Volume 17 Issue (down) Pages 873  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number gtsi @ user @ Serial 64  
Permanent link to this record
 

 
Author Victor Santos; Angel D. Sappa; Miguel Oliveira pdf  openurl
  Title Spcial Issue on Autonomous Driving an Driver Assistance Systems Type Journal Article
  Year 2017 Publication In Robotics and Autonomous Systems Journal Abbreviated Journal  
  Volume Issue (down) Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number gtsi @ user @ Serial 65  
Permanent link to this record
 

 
Author Del Pino, J.; Salazar, G.; Cedeño, V. Msc. pdf  url
openurl 
  Title Adaptación de un Recomendador de Filtro Colaborativo Basado en el Usuario para la Creación de un Recomendador de Materias de Pregrado Basado en el Historial Académico de los Estudiantes Type Journal Article
  Year 2011 Publication Revista Tecnológica ESPOL Abbreviated Journal  
  Volume 24 Issue (down) Pages 29 - 34  
  Keywords  
  Abstract Los sistemas de recomendación son ampliamente utilizados hoy en día gracias a su capacidad de analizar las preferencias de usuarios y sugerir ítems. No obstante, el uso de los recomendadores está limitado a un modelo basado en el usuario y no en su historial de preferencias, discriminando así el campo de aplicación, por ejemplo, a sistemas académicos donde sea primordial el estudio de las decisiones del estudiante a lo largo de su carrera. El presente

trabajo presenta un esfuerzo por adaptar filtros colaborativos basados en el usuario a filtros colaborativos basados en el historial del usuario. Con un conjunto de pruebas mediremos su efectividad utilizando dos algoritmos distintos de similaridad para recomendar materias a un estudiante en el sexto semestre de la carrera de Ingeniería en Electrónica y Telecomunicaciones ofertada por la FIEC – ESPOL. Los resultados muestran que es factible adaptar un recomendador a un modelo basado en el historial del usuario
 
  Address Campus “Gustavo Galindo Velasco” La prosperina Km 30,5 vía perimetral, Guayaquil, Ecuador  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Español Summary Language Español Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number cidis @ cidis @ Serial 13  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: