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Abstract

This thesis addresses the environmental uncertainty in satellite images as a computer vision task us-
ing semantic image segmentation. We focus in the reduction of the error caused by the use of a single-
environment models in wireless communications. We propose to use computer vision and image analysis
to segment a geographical terrain in order to employ a specific propagation model in each segment of the
link. Our computer vision architecture achieved a segmentation accuracy of 89.41%, 86.47%, and 87.37%
in the urban, suburban, and rural classes, respectively. Results indicate that estimating propagation loss with
our multi-environment model reduced the root mean square deviation (RMSD) with respect to two publicly
available tracing datasets.v

Key Words: Computer Vision, Image Analysis, Pattern Recognition Image Segmentation, Supervised Learn-
ing, Wireless Communications.

1 Introduction

A radio propagation model is a mathematical formulation that characterizes the radio-wave condition as a
function of the environment between the antennas in a wireless system. Because each wireless link exists under
different conditions, it is difficult to express a mathematical equation that includes all the link environments.
In this thesis, we used computer vision and image segmentation to estimate the environment using satellite
images. As with image classification, convolutional neural networks (CNNs) have shown potential on image
segmentation problems [1, 2]. Despite the up-convolutional layers, fully connected neural networks (FCNs)
produce coarse segmentation maps due to loss of information during pooling [3].

In this thesis, we generated a categorical matrix by segmenting aerial images into urban, suburban, and rural
classes, enabling the estimation of an environment-specific propagation loss for each segment of the link. We
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Figure 1: Total propagation loss assuming (a) single environment, and (b) a multi-environment scenario. ©
2020 IEEE.

increased the semantic segmentation accuracy of an encoder-decoder architecture by expanding the receptive
field of view of a pre-trained CNN in the encoder, and introducing low-level features and fast bi-linear up-
sampling at the decoder.

2 Methodology

We built an image segmentation network to recognize the three environments: urban, suburban, and rural. In
Fig. 1(a), the total propagation loss in the user equipment *�1, *�2, and *�3 is estimated using a single
environment model L. Fig. 1(b) shows our proposed method, where the propagation loss is estimating the
segments of the three classes (urban LD , suburban LBD , and rural L>). Our system is trained with multiple
examples (satellite images) x of a class, along with their pixel-by-pixel label y. To guarantee that our seg-
mentation model can be generalized to any city, we have used the INRIA aerial image dataset [4]. INRIA is a
collection of 810 km2 high-resolution aerial ortho-rectified color images with a spatial resolution of 0.3 m/pixel
from different European and American cities. The classes were labeled pixel-by-pixel according to the fol-
lowing criteria: Urban includes dense cities and its streets, residential areas, buildings, and any field where
the signal can be blocked by constructions or man-made structures. Suburban includes trees and large parks
inside cities, forest regions, and any field where the signal can be blocked by foliage, trees, or vegetation. Rural
includes open lands without signal blockage, rivers, oceans, or wherever a line of sight between the transmitter
and receiver antenna can be guaranteed. The areas that did not meet any of the criteria were not labeled.

3 System Model

To exploit multi-scale features in the dataset, we employ an encoder-decoder structure [3,5] to perform feature-
dense extraction (Fig. 2). The encoder downscale the satellite images to a feature vector containing dense lo-
cation information, and the decoder expand the summarized feature vector back into a categorical matrix with
the original input dimension. The backbone of the encoder architecture is based on ResNet-101, a 101-layer
CNN pre-trained on ImageNet, composed of five convolution (Conv) modules. We modify the last convolu-
tional block into parallel versions to impose dilated spatial pyramid pooling at different scales to guarantee the
robustness to changes in the environment size, as they encode multi-scale contextual information. As the sam-
pling rate increases, the number of valid filter weights decreases. The resulting features from all branches are
then concatenated and passed through another convolution and batch normalization before the final 1 × 1 con-
volution. The decoder computes feature responses by incorporating low-level features of the encoder, regular
convolutions, and fast bilinear interpolation by a factor of eight before generating the final categorical matrix.
Cross-entropy was selected as the segmentation model performance metric because as the predicted probability
diverges from the ground truth label, the loss increases. To damp oscillations in directions of high curvature,
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Figure 2: The model architecture employing an encoder-decoder structure. © 2020 IEEE.

we combine the gradients with opposite signs, building up speed in directions with a consistent gradient. We
add a fraction of the update of the previous step to amplify the speed and the correct direction.

4 Brief Results

The performance measure used to compare our model with other systems is segmentation accuracy. For com-
parison purposes, our multiple-environment propagation loss estimator under study is referred to as SegNet-
Prop (Segmentation Network Propagation model). In our simulations, the initial learning rate hyperparameter
U controls how much the weights in the convolutional encoder-decoder change in response to the pixel wise
cross-entropy estimation error. Fig. 3 shows the three classes sectioned with our improved encoder-decoder
architecture. The sections in blue, orange, and yellow, correspond to the urban, suburban, and rural classes,
respectively. The accuracy values achieved with SegNetProp in the segmentation of the INRIA dataset are pre-
sented in Table 1. We have increased the segmentation accuracy of an FCN segmenter by 3.17%, 4.03%, and
4.28%, for urban, suburban, and rural classes, respectively.

5 Conclusions

This thesis summary shows that fundamental ideas borrowed from computer vision and image analysis can
be useful in wireless communications problems. First we have improved a convolutional encoder-decoder
architecture to produce semantic maps of aerial images, and then we have employed the generated map to
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Figure 3: A subset of images from the dataset used for validating and testing the segmentation neural network
(top), and their corresponding automatic pixel-segmented data (bottom). © 2020 IEEE.

Table 1: Segmentation Accuracy obtained with different Models*. © 2020 IEEE.

Environment
Classes

Texton Forests
[6]

Patch
Based [7]

FCNs [2]
U-Net
[8]

Proposed
Model† ‡

Urban 45.82% 84.03% 86.24% 87.28% 89.41%
Suburban 41.07% 82.12% 82.44% 84.03% 86.47%
Rural 43.63% 83.65% 83.09% 85.15% 87.37%
*Trained using 4 NVIDIA GTX 1080Ti with local parallel pool.
†Convol. encoder-decoder architecture, optimized with stochastic gradient descent with mom.

create a model that estimates the propagation loss by segments. In addition, the proposed architecture may be
retrained with data from new cities or extended to include more specific environments, such as urban micro,
urban macro, rural macro, streets, open air festival, stadium, etc.
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