|
Patricia Súarez, H. V., Dario Carpio & Angel Sappa. (2023). Corn Kernel Classification From Few Training Samples. In journal Artificial Intelligence in Agriculture, Vol. 9, pp. 89–99.
|
|
|
Charco, J. L., Sappa, A.D., Vintimilla, B.X., Velesaca, H.O. (2021). Camera pose estimation in multi-view environments:from virtual scenarios to the real world. In Image and Vision Computing Journal. (Article number 104182), Vol. 110.
Abstract: This paper presents a domain adaptation strategy to efficiently train network architectures for estimating the relative camera pose in multi-view scenarios. The network architectures are fed by a pair of simultaneously acquired
images, hence in order to improve the accuracy of the solutions, and due to the lack of large datasets with pairs of
overlapped images, a domain adaptation strategy is proposed. The domain adaptation strategy consists on transferring the knowledge learned from synthetic images to real-world scenarios. For this, the networks are firstly
trained using pairs of synthetic images, which are captured at the same time by a pair of cameras in a virtual environment; and then, the learned weights of the networks are transferred to the real-world case, where the networks are retrained with a few real images. Different virtual 3D scenarios are generated to evaluate the
relationship between the accuracy on the result and the similarity between virtual and real scenarios—similarity
on both geometry of the objects contained in the scene as well as relative pose between camera and objects in the
scene. Experimental results and comparisons are provided showing that the accuracy of all the evaluated networks for estimating the camera pose improves when the proposed domain adaptation strategy is used,
highlighting the importance on the similarity between virtual-real scenarios.
|
|
|
Rivadeneira R.E., S. A. D., Vintimilla B.X., Nathan S., Kansal P., Mehri A et al. (2021). Thermal Image Super-Resolution Challenge – PBVS 2021. In In IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2021., junio 19 – 25, 2021 (pp. 4354–4362).
|
|
|
Mehri, A., Ardakani, P.B., Sappa, A.D. (2021). MPRNet: Multi-Path Residual Network for Lightweight Image Super Resolution. In In IEEE Winter Conference on Applications of Computer Vision WACV 2021, enero 5-9, 2021 (pp. 2703–2712).
|
|
|
Rafael Rivadeneira, H. V. & A. S. (2024). Cross-Spectral Image Registration: a Comparative Study and a New Benchmark Dataset. In In Fourth International Conference on Innovations in Computational Intelligence and Computer Vision (ICICV 2024).
|
|
|
Henry Velesaca, B. V., Jorge Vulgarin, Coen Antens & Alberto Rubio Pérez. (2024). Deep Learning-based Multimodal Sensing Framework for AntiSpoofing Systems. In Fourth International Conference on Innovations in Computational Intelligence and Computer Vision (ICICV 2024), .
|
|
|
Patricia Suarez & Angel D. Sappa. (2024). Haze-Free Imaging through Haze-Aware Transformer Adaptations. In In Fourth International Conference on Innovations in Computational Intelligence and Computer Vision (ICICV 2024).
|
|
|
Suárez P. (2021). Processing and Representation of Multispectral Images Using Deep Learning Techniques. In Electronic Letters on Computer Vision and Image Analysis, Vol. 19(Issue 2), pp. 5–8.
|
|
|
Velesaca, H. O., Suárez, P. L., Mira, R., & Sappa, A.D. (2021). Computer Vision based Food Grain Classification: a Comprehensive Survey. In Computers and Electronics in Agriculture Journal. (Article number 106287), Vol. 187.
|
|
|
Tyrone Rodríguez, A. G., Paolo Piedrahita & Miguel Realpe. (2024). Towards Birds Conservation in Dry Forest Ecosystems through Audio Recognition via Deep Learning. In In 9th International Congress on Information and Communication Technology ICICT 2024.
|
|