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This article presents an efficient approach to classify a set of corn kernels in contact, whichmay contain good, or
defective kernels along with impurities. The proposed approach consists of two stages, the first one is a
next-generation segmentation network, trained by using a set of synthesized images that is applied to divide
the given image into a set of individual instances. An ad-hoc lightweight CNN architecture is then proposed to
classify each instance into one of three categories (ie good, defective, and impurities). The segmentation network
is trained using a strategy that avoids the time-consuming and human-error-prone task of manual data annota-
tion. Regarding the classification stage, the proposed ad-hoc network is designedwith only a few sets of layers to
result in a lightweight architecture capable of being used in integrated solutions. Experimental results and com-
parisons with previous approaches showing both the improvement in accuracy and the reduction in time are
provided. Finally, the segmentation and classification approach proposed can be easily adapted for use with
other cereal types.
© 2023 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co., Ltd. This is an open

access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

According to the FAO, world grain trade is forecast to expand to a
new record in 2021=2022. Corn continues to predominate in the
world cereal market.1 Based on the shown statistics and the importance
of this cereal in the world economy, it is imperative to define standards
in its commercialization processes and quality analysis is one of them.
At present, the quality analysis of corn kernels is carried out manually
by experts (e.g., Paulsen et al. (2019)), however, this task is tedious,
complex, and prone to errors, since there is a visual and subjective in-
spection process.

As mentioned above, it is necessary to define policies and standards
that allow fair trade (e.g., Bacon (2005), Naylor (2017),Wilson (2010));
subjectivity should be eliminated from the quality analysis process.
In recent years some approaches have been proposed for the analysis
of the quality of different types of kernels. In general, these new
approaches are based on the usage of deep learning techniques
(e.g., Velesaca et al. (2020), Shamim et al. (2020), Singh and
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Chaudhury (2020), Li et al. (2019)) on visible spectra images (i.e., RGB
images). In addition to these approaches, a few contributions working
on other spectral bands (e.g., ultraviolet near-infrared) have been also
proposed by Cheng et al. (2019). Although interesting results have
been obtained, as will be presented in the next section, most of them
impose constraints in the given sample set (e.g., non-touching kernels)
making difficult their use in real scenarios. The main drawback of deep
learning-based techniques is related to the requirement of a large
number of labeled images to obtain a reliable and generalizable solu-
tion. In general, image annotation is manually performed becoming a
time-consuming task and sometimes a bottleneck in thewhole process.
To overcome this problem some authors have proposed to use synthe-
sized datasets (e.g., Toda et al. (2020), Kar et al. (2019)), which allow
the generation of large annotated datasets, as large as required by the
training process.

This paper presents a technique for classifying the content of a given
sample of corn grains into three categories: good grains, defective
grains, and impurities. Good grains are those that meet the desired
quality standards and are suitable for consumption or processing; de-
fective corn grains include broken samples or samples infected by
fungi or bacteria, which makes them undesirable for consumption or
processing; finally, impurities are foreign materials that are found in
the given sample, they can be organic (e.g., pieces of grass or other ce-
reals) or inorganic (e.g., pebbles). The classification problem is tackled
without imposing constraints on the distribution of the grains or the
presence of impurities. The proposed approach consists of two stages,
unications Co., Ltd. This is an open access article under the CC BY-NC-ND license (http://

http://crossmark.crossref.org/dialog/?doi=10.1016/j.aiia.2023.08.006&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.aiia.2023.08.006
mailto:plsuarez@espol.edu.ec
mailto:hvelesac@espol.edu.ec
mailto:dncarpio@espol.edu.ec
mailto:asappa@espol.edu.ec
mailto:asappa@cvc.uab.es
http://www.fao.org/in-action/inpho/crop-compendium/cereals-grains/en
https://doi.org/10.1016/j.aiia.2023.08.006
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.sciencedirect.com/science/journal/
http://www.keaipublishing.com/en/journals/artificial-intelligence-in-agriculture/
http://www.keaipublishing.com/en/journals/artificial-intelligence-in-agriculture/


P.L. Suárez, H.O. Velesaca, D. Carpio et al. Artificial Intelligence in Agriculture 9 (2023) 89–99
instance segmentation, and classification, as normally proposed in these
types of solutions Velesaca et al. (2021b). In the first stage, a novel
strategy is proposed to avoid the time-consuming data annotation pro-
cess. In the second stage, an efficient and lightweight architecture is
proposed, which overcomes state-of-the-art corn kernel classification
approaches The core idea is to implement an independent lightweight
classification module that may be used independently in further appli-
cations. The manuscript is organized as follows. Section 2 presents
works related to the segmentation and classification problems.
Section 3 presents the approach proposed for classifying elements
from the given sample set, together with a summary of the dataset
generated for the current work. Experimental results and comparisons
with different approaches are given in Section 4. Finally, conclusions
are presented in Section 5.

2. Related works

As described above, this paper presents an approach to perform corn
kernel segmentation and classification. This technique addresses the
inspection of the quality of corn samples, which could contain good
kernels, defective kernels, and impurities. In this section, state-of-the-
art algorithms in these topics are reviewed. Firstly, the most relevant
segmentation approaches generally used in the detection step, are sum-
marized; secondly, classification techniques related to classical and
deep learning-based approaches, are presented. Table 1 presents a
summary of all literature reviewed in this section.

2.1. Segmentation techniques

Instance segmentation has been largely studied in the computer
vision community for different topics. Regarding its usage in the
segmentation of sets of cereal kernels, there are studies based on the
usage of threshold to split up the given image into background and fore-
ground; these techniques work with grayscale images and perform
Table 1
Summary of literature reviewed in Section 2 grouped by type of grain—classification accuracy

Kernel Author(s) Segmentation

Corn

Javanmardi et al. (2021) Multi-Threshold
Velesaca et al. (2021a) Mask R-CNN
Zhang et al. (2021a) Otsu
Zhang et al. (2021b) Otsu
Adke et al. (2020) Mask R-CNN
Ali et al. (2020) Thresholding
Velesaca et al. (2020) Mask R-CNN
Cheng et al. (2019) –
Effendi et al. (2019) Thresholding
Huang et al. (2019) Watershed
Li et al. (2019) Line Profile Segmentation Meth
Ni et al. (2019) Background removal
Qiu et al. (2019) –
Ribeiro and Yao (2019) –
Daskalov et al. (2018) –
Ni et al. (2018) Thresholding + Morphological O
Qiu et al. (2018) –
Wu et al. (2018) Thresholding
Zhu et al. (2018) Thresholding
Ambrose et al. (2016b) –
Ambrose et al. (2016a) Thresholding
Williams and Kucheryavskiy (2016) Thresholding
Yuan et al. (2016) –
Yang et al. (2015) Background segmentation
Zhu et al. (2015) –

Barley
Toda et al. (2020) Mask R-CNN
Paliwal et al. (2003) Thresholding

Rice
Shao et al. (2021) Watershed
Aukkapinyo et al. (2019) Marker-based watershed
Kaur and Singh (2015) Grayscale thresholding

Wheat Shrestha et al. (2016) Watershed
Coffee Arboleda et al. (2018) –
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binarization using a specific threshold value, which depends on the
type of grain analyzed and the color of the used background
(e.g., Paliwal et al. (2003), Kaur and Singh (2015), Arboleda et al.
(2018)). More elaborated approaches have been also considered, for in-
stance, the watershed technique has been used to segment grains from
the given image; this technique uses grayscale images where the
variations in tonality represent a topographic surface and thehighest in-
tensity values are the peaks while the lowest values are the valleys. The
process begins, filling each valley with a different color, then continues
to fill until adjacent regions begin to touch and the boundaries between
each region are well defined. The result of this process is the image
segmented in each region with different colors. In Huang et al. (2019)
and Shrestha et al. (2016) the authors propose to use the watershed
method to obtain the segmented instance of corn and wheat kernels
respectively.

Like in most computer vision tasks, recently convolutional neural
networks (CNN) are used for the instance segmentation task overcom-
ing state-of-the-art approaches (e.g., Aukkapinyo et al. (2019), Ganesh
et al. (2019), Toda et al. (2020), Velesaca et al. (2020)). Among the
different proposals, the Mask R-CNN architecture He et al. (2017) has
become a benchmark in the area of object detection and instance seg-
mentation; this architecture extends the Faster R-CNN object detection
framework Ren et al. (2016) by adding a branch for the generation of
the masks at the end of the model, thus achieving the segmentation of
instances for each output bounding box. Regarding the usage of the
aforementioned approaches in the cereal kernel segmentation, in Toda
et al. (2020) the authors propose to use theMask R-CNNnetwork to de-
termine the morphological phenotype of barley grains. For the training
phase, the authors use a dataset where each image is generated by the
collage of real corn kernels. In general, the model trained with these
synthesized images has given better results compared to the training
with manually annotated real-world images. The strategy is validated
using other types of grains such as oats, rice, lettuce, andwheat. Another
work to perform the instance segmentation of corn kernels is presented
corresponds to the values given by the authors in their experimental result sections.

Classification Classif. % Acc.

CNN 98.10
– –
CNN 93.30
CNN 97.50
Mask R-CNN 97.50
Multilayer Perceptron 98.93
CNN (CK-CNN) 95.60
Random Forest 95.00
K-NN 90.00
CNN (GoogLeNet) 95.00

od Maximum Likelihood Estimator 85.72
ResNet 98.20
PLS-DA 99.19
LBP + PCA 99.00
SVM 93.05

perations CNN 97.00
Fourier Transform Near-Infrared Spectroscopy 98.70
Support Vector Machine-Grid Search 97.44
K-SVD method 94.00
PLS-DA 95.00
PLS-DA 95.60
Object-Wise Method 93.00
SVM 91.11
SVM 97.25
K-NN 92.67
Mask R-CNN 95.00
ANN 96.00
Localization-based Counting Fully CNN 89.88
Mask R-CNN 81.00
Geometric features 97.21
ANN 72.80
Geometric features 100
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in our previous work Velesaca et al. (2020). In this work, the segmenta-
tion is carried out through the Mask R-CNN network that uses the
default parameters of the framework. Also, ResNet 101 is used as a
backbone, and the pre-trained weights from the COCO dataset are con-
sidered. The segmentation approach has been fed with a set of real-
world images manually annotated with the open collaboration tool
Labelbox2; this tool allows drawing off the contour of each element
(i.e., corn kernels and impurities) present in the given image. One of
the main problems of this pipeline is to label a large dataset; it is a
time-consuming task that can be affected by wrong annotations. More
recently, trying to avoid this time-consuming task, we propose a novel
strategy that generates synthesized images of clusters of corn kernels
Velesaca et al. (2021a). A dataset, as large and diverse as required is
generated, thus reducing the use of resources.

Contrary to previous works where clusters of corn kernels are
considered, in Adke et al. (2020), the instances segmentation of corn
ears are tackled to estimate the total consumption of the grains by ani-
mals in the wild. The authors use the Mask R-CNN network to address
two approaches to instance segmentation: identifying whole corn ears
and bare cob parts with and without corn kernels. It can be highlighted
that the results obtained by the Mask R-CNN network when evaluated
in images with different lighting conditions and backgrounds with
which it was not trained, the network was able to identify certain in-
stances of segmentationwith acceptable precision. The training set con-
tains 70manually annotated images, although this is not a large number
it should be highlighted that the contour of every single kernel in the ear
should be drawn, hence it is a tedious and time-consuming task.

In Shao et al. (2021), similar to the previous work, the author per-
forms the segmentation of grains on the ears, but with rice kernels, it
uses the LC-FCN semantic segmentation network to perform the
segmentation of rice ears, then applies the Watershed algorithm
Roerdink and Meijster (2000) to obtain all individual instances present
in the image. The experimental results obtained by the authors show
better results than traditionalmachine learningmethods and SSD object
detection algorithms. Themodel allows the calculation of the number of
ears of rice in the field and provides basic data to estimate the yields of
rice production. Like the previous work, it has the problem that the im-
ages were manually labeled, which represents a time-consuming task.
The Watershed segmentation technique used by the authors is very
sensitive to lighting conditions, resulting in an over-segmentation and
generation of a greater number of instances than there are.

2.2. Classification techniques

Once every single instance from the given image is segmented, they
need to be classified according to the categories defined in the final
application. Recently, some approaches for the corn kernel classification
problem have been proposed, especially focused on determining the
quality of the grain to minimize time and costs in the verification pro-
cesses. For instance, in Cheng et al. (2019) the authors propose a pattern
recognition-based technique to detect contaminated corn kernels using
a back-propagation neural network; the main limitation of this
approach lies in the fact that kernels should not touch each other.
Also, there is another technique based on the Fourier transform using
near-infrared images, with which the most representative characteris-
tics were extracted to evaluate their quality Qiu et al. (2018). Another
work focused on the corn kernel classification problem has been pre-
sented in Qiu et al. (2019), where the authors introduce a corn classifi-
cation algorithm that extracts the most representative features to
differentiate between good and defective corn kernels. The success of
this approach depends on a pre-processing and normalization process.
Another approach that performs corn classification of three types of
2 labelbox.com.
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grades (A, B, C) is presented by Wu et al. (2018). This technique is
based on a support vector machine to perform the classification. In Ali
et al. (2020) the authors also present a corn seed classification
technique using hybrid features to determine the corn seed quality.
This approach has been developed using Random Forest Breiman
(2001), BayesNet Pearl (1985), LogitBoost Friedman et al. (2000) an
MLP model, which reaches the best results.

In Zhu et al. (2018), an approach to classify 4 types of corn kernels
has been proposed using a learning model based on a multi-kernel dic-
tionary. Similarly, in Effendi et al. (2019), a traditional classification
method based on the KNN algorithm that extracts color and texture
has been proposed to determine the quality of the corn grains. In
Ambrose et al. (2016b) the authors propose an approach to determine
the viability of seed germination, for which, they have implemented
the use of techniques based on Raman spectroscopy and Fourier trans-
form using images of the near-infrared spectrum. Similarly, in
Williams and Kucheryavskiy (2016) an approach is proposed for the
classification of corn grains according to the hardness of the grain. For
the experiments, images of the hyperspectral near-infrared spectrum
have been used based on the object-wise algorithm. Another technique
to determine the purity of the corn seed is proposed in Yang et al.
(2015), where the corn seed classifier is based on texture, spectral,
and morphological characteristics using SVM. The authors do not indi-
cate whether the samples used in their experiments include seeds
with occlusion or that are touching each other, which would be impor-
tant to consider to see if it works with partial parts of the images of
grains or with undefined edges that make look like a grain has two
germ core.

In Zhu et al. (2015) a method is proposed to classify maize kernels
contaminated with aflatoxins using the KNN algorithm. For this work,
hyperspectral images of the near-infrared spectrum have been used.
In Yuan et al. (2016), the authors propose a technique to detect moldy
corn kernels with different levels of mildew using a support vector ma-
chine and images of the near-infrared spectrum. In Daskalov et al.
(2018), the authors also present a corn kernel classification algorithm
to detect or rule out the presence of kernels affected with Fusarium
moniliforme disease by implementing a support vector machine. Also
using images beyond the visible spectrum, in Ambrose et al. (2016a)
the authors propose a hyperspectral imaging technique to classify
corn seeds; the proposed approach receives the characteristics ex-
tracted from partial least squares discriminant analysis (PLS-DA) Wold
et al. (2001) for the grading of aged (heat-treated) and normal (un-
treated) corn seeds. In this work, the authors propose a technique that
is not invariant to the multiple positions of the grains, in the experi-
ments they are only based on the diagonal and intercalated position of
the seeds. Also, in Ribeiro and Yao (2019), the authors propose a com-
bined HSV color space image processing technique to classify corn ker-
nels between good and rotten. The authors describe that their data set
has been based on the same set of images at three different resolutions.

Contrary to previous approaches, which are based on traditionalma-
chine learning techniques, in Zhang et al. (2021a) a CNN-based
approach has been proposed to perform four varieties of corn seed clas-
sification, to determine the quality of the corn kernels. Themodel works
with hyperspectral images of certain wavelength ranges, corresponding
to the seed zone. The results obtained by the convolutional network
were better when compared with techniques such as K-nearest neigh-
bors Cover and Hart (1967) and support vector machine Cortes and
Vapnik (1995). On the other hand, in Li et al. (2019), the authors
propose a deep learning method to differentiate defective classes of
corns. Although interesting results are presented, it is not clear what is
the behavior of the model with touching or occluding grains. In the
same way, Ni et al. (2018) proposes deep convolutional networks,
such as AlexNet Krizhevsky et al. (2012) and VGG Simonyan and
Zisserman (2015), to classify dual touching kernels. Another proposal
for the classification of grains is presented in Zhang et al. (2021b),
where the authors propose the classification of corn grains by their

http://labelbox.com


Fig. 1.Overall pipeline for synthesized clusters of grains generation. Firstly, each grain from the real-world images—i.e., grids of grains—is cropped. Then, the grain's area is extracted using
background subtraction. Next, grains are inserted into an empty synthetic image by the positioning algorithm; and finally, a custom background is applied to the synthesized image.
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level of freezing (mild, moderate, and severe). Two machine learning
models (KNN and SVM) and one convolutional neural network model
were tested using hyperspectral imaging. The results obtained better
quantitative values for the convolutional network model.

Also, in Li et al. (2019), the authors propose a deep learning-based
technique to discriminate different defective types of corns. In the
same way, in Ni et al. (2019) the authors propose the use of very deep
convolutional networks, such as VGG Simonyan and Zisserman (2015)
and Residual Network (ResNet) He et al. (2016), which performs the
task of classification on dual touching kernels. Recently, another
classification technique has been presented in Javanmardi et al.
(2021), it follows a multiclass classification approach of corn grain
using a convolution network to extract themost representative charac-
teristics. The authors just use the CNN to extract representative features,
but not to perform the whole classification process.

3. Proposed approach

This section presents first the strategy proposed to generate a
real-world and synthesized image dataset; then, it gives details of the
Mask R-CNN network used to perform the instances segmentation. Fi-
nally, it presents the proposed corn kernels classification network
used to classify each instance into one of the three categories.

3.1. Dataset generation

On the contrary, to other pattern recognition problems, where there
is a large literature and available datasets (e.g., pedestrian or vehicle de-
tection and classification), on the seed classification domain there are
just a few approaches, and most of them trained and evaluated on
their datasets—in most of the cases just a few annotated images.
Without a common benchmark, it is impossible to do comparisons, as
well as to know the limits of the state-of-the-art approaches. In the
current work, a strategy for dataset generation is proposed and the ob-
tained dataset is released to the community for further evaluation and
comparisons.3

The dataset generation process consists first of taking different
samples of corn kernels according to the three categories considered
in the current work (i.e., good grains, defective grains, and impurities).
Samples from each category are manually grouped to avoid further
image annotation tasks. Then, a set of images from each of the three
clusters are acquiredwith a 12MP camera orthogonal to the background
plane (A4 sheet) containing the samples in a natural lighting scenario.
Each image contains just the A4 sheet with the instances regularly dis-
3 Code and dataset will be available through the following link: https://github.com/
vision-cidis/CK-CNNLW.
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tributed; a rectangular grid is used to make easy the split-up of each
image into (5� 4) cells, and each cell contains just a single grain. This
process is repeated for the three categories, obtaining approximately
1000 instances per category. Finally, images from each ROI (cells in
the A4 sheet) are stored as single images for further processing—see
individual grain cropping illustration in Fig. 1.

Once a large dataset of single instances, of the three categories
considered in this work, has been acquired synthesized corn kernel
clusters are generated. The goal of this process is to avoid the time-
consuming, and possible source of error, image annotation task. The
synthesized image generator (see Fig. 1) allows the generation of corn
kernel cluster images of different sizes containing different percentages
of the three categories. Each instance is randomly placed and rotated
avoiding overlapping between them. The user-defined parameters for
the synthesized image generator are the size of the resulting image,
the number of images, the minimum and the maximum number of
instances, the percentage of goods, defective and impurities, the per-
centage of grains touching and cutting the image boundary, and back-
ground color. In case the number of instances is too large for the size
of the defined image, the scale of the grains can be configured to fulfill
the requirements. The synthesized image generator consists of three
stages as shown in Fig. 1 (right): background subtraction, grain posi-
tioning, and background replacement.

Background subtraction is performed in the HSV color space, with
thresholding parameters empirically obtained; it is robust to different
lighting conditions tested during the image acquisition step. After the
image thresholding, the obtained grainmask is refinedwith the applica-
tion ofmorphological operators to eliminate shadows and improve con-
tour definition. Then, the obtained grain mask is used to extract the
points that define the contour of the grain; this contour is used as
ground truth for training the instance segmentation algorithm. This
background subtraction and contour estimation is applied over every
single image obtained from the splitting-up of the original grid cells.
Grain positioning randomly selects masks, obtained from the back-
ground subtraction step mentioned above, according to the parameters
provided to the generator. Then, it inserts them into an empty image of
the specified dimensions applying a random rotation, in each iteration,
the algorithmfinds available spaces in the synthesized image being gen-
erated and scrolls the grain until it does not overlap with previous
masks. The relative position of grains contours is stored in a data
structure to generate the grains annotated file—ground truth. Finally, a
background replacement stage is applied to replace the provided
background in the full synthesized image.

In addition to the acquisition processmentioned above, where seeds
are placed in cells of a regular grid, a small set of images containing a
cluster of corn kernels has been also acquired. Seeds and impurities in
this small set of images are manually annotated, using the Labelbox
crowdsourcing annotation tool, and used as ground truth to evaluate

https://github.com/vision-cidis/CK-CNNLW
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Fig. 2.Mask R-CNN architecture used for grain instance segmentation. Images of synthesized clusters of corn grains are shown as an example (classification module is not used).

Table 2

Datasets used for training segmentation algorithm(Mask R-CNN) (Realy: datasetwith real

images Velesaca et al. (2020); Syny: dataset with synthetized images Velesaca et al.
(2021a); Syni: current work).

Dataset # of images # of instances

Train Val Train Val

Good Def. Imp. Good Def. Imp.

Realy 16 4 2835 466 84 673 83 23

Syny 16 4 2384 494 80 600 124 20
Syn1 24 6 3543 734 120 896 185 30
Syn2 32 8 4741 974 160 1189 245 40
Syn3 40 10 5946 1217 200 1485 307 50
Syn4 48 12 7145 1465 240 1785 367 60
Syn5 56 14 8365 1715 280 2083 430 70
Syn6 72 18 10,768 2210 359 2661 550 90
Syn7 96 24 14,359 2949 479 3557 736 120
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the performance of the segmentation algorithm. This evaluation dataset
contains 3 images with about 204 instances each.

3.2. Image segmentation

As presented in Section 2 there are different approaches in the
literature to segment instances froma given image. Among the different
options, the Mask R-CNN architecture He et al. (2017) has become one
of the best deep-learning-based options. The Mask R-CNN framework
consists of three stages (see Fig. 2). First, the backbone extracts feature
maps from the input images. Second, the feature maps generated by
the backbone are sent to the Region Proposal Network (RPN) to gener-
ate Regions of Interest (ROI). Third, the ROIs generated by RPN are
mapped to extract the corresponding target features on the shared fea-
ture maps, and then map them to a fully connected layer, for the target
classification and segmentation instances. The process generates the
classification scores, bounding boxes, and segmentation masks. More
details on the Mask R-CNN implementation are given in Section 4.

In general, the use of deep learning algorithms requires having large
sets of annotated images for the training stage. In the particular case of
the current work, where there are not a large set of annotated images
available, a manual annotation process is required. It is a challenging
task that requires a lot of time and resources. To avoid this problem, in
our previous work Velesaca et al. (2021a) the usage of a synthesized
data set has been evaluated. It contains just 20 synthesized images
and has shown appealing results. In the current work, we propose to
follow the same strategy, hence a large set of single instances has
been acquired allowing the generation of a scale-annotated dataset. As
mentioned in Section 3.1 the algorithmproposed for a synthesized clus-
ter of grains generation allows generating datasets with different:
amounts of images, percentages of instances, and seeds distribution,
among other variables. It is expected that as large is the dataset as better
the result; hence, to define howmany images should be used for train-
ing the Mask R-CNN algorithm different datasets have been generated
with an increasing number of synthesized images; more information
on these datasets is given in Table 2, together with the information of
other datasets (i.e., Velesaca et al. (2020), Velesaca et al. (2021a))
used for comparison in the experimental result section.

3.3. Classification

Regarding the classification stage, a novel and lightweight architec-
ture has been designed in order to facilitate its usage in an embedded
application, reducing computational complexity. The proposed archi-
tecture, referred to as CK-CNNLW, is shown in Fig. 3. The architecture
consists of only four layers of convolutional operations with the corre-
sponding activation functions. The architecture uses a leaky rectified
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linear unit, which is an activation function based on a ReLU that serves
to avoid sparse gradients at training time, not pruning the negative
part to zero during backpropagation. Tomeasure the loss of the training
a cross-entropy loss function has been used. The model ends with two
fully connected layers to flatten and connect the features extracted
onto the output layer. The CK-CNNLW network has been trained with
a learning rate of 0.00027, in order to generalize the model, which
provides a faster convergence.

The model could be used to perform a multiclass classification
problem, changing only the last layer according to the number of classes
to be classified. In our case, this model has been used for a 2-class clas-
sification (good or defective corn kernels) and a 3-class classification
(good corn kernels, defective corn kernels, and impurities). The
CK-CNNLW network has been trained from scratch using Nesterov
ADAM (NADAM) optimizer with a learning rate of 0.000275, and
leaky-relu of 0.15 for average pooling and max-pooling layers. A Titan
V NVIDIA GPU was used to train our model, this process takes only 5 h
given the simplicity of our model. The obtained results have been com-
pared with the previous approaches, including networks of the state of
the art like VGG Simonyan and Zisserman (2015) or ResNet He et al.
(2016), these comparisons are presented in the next section.

4. Experimental results

This section presents results obtained with the proposed pipeline,
including both evaluations of the segmentation trained with synthe-
sized images as well as classification of the segmented instances
(i.e., good kernels, defective kernels, and impurities).



Fig. 3. Proposed lightweight classification architecture.
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4.1. Instance segmentation

The results obtained by training the Mask R-CNN network He et al.
(2017) using real-world and synthesized clusters of corn kernels
datasets are evaluated in this section. The Mask R-CNN network imple-
mentation used in this work is based on ResNet-101 as the backbone
and pre-trained COCO weight. The images in the training dataset have
been resized to 1024� 1024 to reduce the computational cost of the
entire process. The distribution of images used in the different datasets
is shown in Table 2, where the number of images for training and vali-
dation is varied, and the number of instances per image is also shown.
Fig. 2 shows the architecture of the Mask R-CNN network used in this
work.

The performance on the different datasets is evaluated as follows:
iÞ by taking into account the number of grain instances correctly
detected; iiÞ using the intersection over union (IoU), and iiiÞ through
the average precision (AP) in IoU 75% (AP75), and the average value of
IoU 50% to 95% with a step size of 5% (AP@[0.5:0.95]). Tables 3 and 4
show experimental results obtained with the Mask R-CNN network
trained with the different datasets. Table 3 shows the obtained
number of instances and the IoU metric computed on the set of three
manually annotated images, considered as ground truth, mentioned in
Section 3.1. The first row (GT) corresponds to the number of instances
per ground truth image; the second row shows results obtained when
trained with the dataset presented in Velesaca et al. (2020)—it should
be mentioned this dataset only contains manually annotated real-world
images; the third row corresponds to the results obtained from the eval-
uation of the Mask R-CNN network when trained with a synthesized
dataset Velesaca et al. (2021a). Results from rows 4 to 10, correspond
Table 3
Results on testing images (manually annotated ground truth) when the Mask R-CNN net-

work is trained with: real images (Realy) Velesaca et al. (2020); and synthesized clusters

dataset (Syny) Velesaca et al. (2021a) —GT: Ground Truth.

Dataset # of instances IoU

T1 T2 T3 Sum T1 T2 T3 Avg

GT 200 190 223 613 – – – –

Realy 199 189 215 603 0.901 0.897 0.898 0.899

Syny 198 188 215 601 0.914 0.911 0.900 0.908
Syn1 199 188 215 602 0.909 0.913 0.897 0.906
Syn2 199 189 214 602 0.909 0.910 0.897 0.906
Syn3 198 189 215 602 0.915 0.914 0.900 0.910
Syn4 198 189 216 603 0.913 0.913 0.898 0.908
Syn5 199 188 215 602 0.909 0.913 0.897 0.906
Syn6 198 189 216 603 0.911 0.911 0.896 0.906
Syn7 198 189 215 602 0.913 0.909 0.914 0.909
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to the results obtainedwith theMaskR-CNNnetwork trainedwithdiffer-
ent datasets containing synthesized images, the number of images was
increased in the training stage of each dataset. On the other hand,
Table 4 shows the average precision (AP) in IoU75% (AP75), and the aver-
age value of IoU 50% to 95% with a step size of 5% (AP@[0.5:0.95]).

Looking at the results depicted in Table 3, it can be appreciated that
the number of detected instances is the same when real-world images
or synthesized images are considered for training; on the contrary, it
does not happen in the case of the IoU metric. The results of the IoU
metric show better performance, in all cases when the synthesized
dataset is considered, an improvement of up to almost 1.4% can be ob-
served in the first test image. On the other hand, the AP results for this
case study are shown in Table 4, where AP@[0.5:0.95] and AP75 metric
values are shown. It can be observed that the Mask R-CNN trained
with synthesized images presents a better performance in the AP@
[0.5:0.95] and AP75 metrics. The results obtained in the IoU and APmet-
rics show that the use of synthesized datasets allows a high percentage
of precision to correctly delimit the area and contour of the corn kernels,
confirming the effectiveness and validity of the proposed approach.

In order to determine the dataset with the best configuration and
performance, four metrics (i.e., number of instances, IoU, AP@
[0.5:0.95], and AP75) are considered, although each metric is individu-
ally evaluated, the metric of the number of instances in the present
work has the highest priority, importance, and is used to discard
datasets show takes in the number of detected instances directly affect
the value obtained in the other three evaluated metrics. For the afore-
mentioned, among the results obtained in the evaluation of the different
datasets, the Re, Syn4, and Syn6 datasets show the best results about the
number of detected instances and also taking into account the IoUmet-
ric, the Syn4 dataset presents the best performance of the 3 datasets for
Table 4
Results using the AP metric on testing images (manually annotated ground truth) when

the Mask R-CNN network is trained with real images (Realy) Velesaca et al. (2020); and

synthesized clusters dataset (Syny) Velesaca et al. (2021a).

Dataset AP@[0.5:0.95] AP75

T1 T2 T3 Avg T1 T2 T3 Avg

Realy 0.790 0.800 0.780 0.793 0.964 0.978 0.950 0.958

Syny 0.830 0.830 0.790 0.818 0.980 0.984 0.945 0.964
Syn1 0.790 0.800 0.760 0.784 0.978 0.984 0.937 0.966
Syn2 0.790 0.820 0.770 0.793 0.979 0.973 0.932 0.961
Syn3 0.810 0.830 0.780 0.804 0.975 0.989 0.941 0.968
Syn4 0.800 0.830 0.770 0.799 0.970 0.989 0.941 0.967
Syn5 0.800 0.810 0.760 0.791 0.985 0.984 0.928 0.965
Syn6 0.810 0.820 0.770 0.802 0.974 0.978 0.936 0.963
Syn7 0.800 0.820 0.770 0.797 0.974 0.984 0.941 0.966



P.L. Suárez, H.O. Velesaca, D. Carpio et al. Artificial Intelligence in Agriculture 9 (2023) 89–99
both metrics. Taking into account the previous results evaluated of the
twometrics, it was observed that in the AP@[0.5:0.95] and AP75 metrics
for the datasets Re, Syn4, and Syn6, it was observed that for AP@
[0.5:0.95] and AP75 metrics the Syn4 dataset obtains the best results
on average. In general, in the four evaluated metrics, it was observed
that the configuration presented by the Syn4 dataset obtains the best
performance.

Finally, the qualitative results and the annotations of the ground
truth in the three test images are shown in Fig. 4, where the number
of instances predicted by Mask R-CNN and the values of the ground
truth are presented. For easy visualization of the qualitative evaluation,
the area of each grain segmented by the Mask R-CNN is colored brown
while the manual annotations are shown in green. Additionally, a blue
95
circle has been used to highlight each individual instance along with
the corresponding instance number, to verify that there are noduplicate
or poorly segmented kernels.

4.2. Classification

This section presents results obtainedwith the proposed lightweight
network for classifying corn grains according to their quality. This
approach receives as an input an instance obtained in the previous in-
stance segmentation stage. The proposed approach is evaluated in two
scenarios: iÞ two-class classification problem (i.e., good and defective
corn kernels), and iiÞ three-class classification problem (i.e., good,
defective, and impurity). The results obtained with both approaches



Fig. 4. Segmentation results obtained on testing images (manually annotated ground truth images) when Mask R-CNN is trained with real (Realy) and synthesized (Syny) datasets— the

number of obtained instances is shown in each case. (1st row) Ground truth labeled with Labelbox. (2nd row) Results when the real-world image dataset (Realy) Velesaca et al. (2020) is
used for training. (3rd row) Results when the synthesized cluster dataset (Syny) Velesaca et al. (2021a) is used for training. (4th to 10th row) Results when different synthesized cluster
datasets are used for training (see Table 2).
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are better than those obtained with the state-of-the-art architectures,
such as VGG16, ResNet50, andMask R-CNN, which were used for quan-
titative comparisons.

The two-class classification approach has been trained using a set of
3710 images (2000 images of good and defective grains for training,
1350 images of good and defective grains for testing, and 360 images
of good and defective grains for validating the model after the training
process). On the other hand, in the three-class classification scenario,
the proposed approach has been trained using 6800 images (2100 im-
ages of good corns, 2600 images of defective corns, and 2100 images
of impurities), 1800 images are used for testing the training process
(600 images of good corns, 600 images of defective corns and 600
Table 5
Results of classification stage for the two-class scenario.

Network Good Defective Avg. Avg. Test Time # of Net.

Corn Corn Acc per Image (sec) Param.

Mask R-CNN 0.962 0.644 0.803 0.0080 63,738 K
VGG16 0.950 0.917 0.933 0.0097 134,268 k
ResNet50 0.906 0.917 0.911 0.0106 23,591 K
CK-CNN 0.956 0.933 0.945 0.0074 3306 K
CK-CNNLW 0.98 0.983 0.965 0.0063 548 K
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images of impurities). Finally, regarding the validation process, a total
of 2060 images are considered (700 images of good corns, 700 images
of defective corns, and 660 images of impurities). All the images avail-
able for the training and testing processes have been enlarged through
the application of data augmentation techniques, performing opera-
tions of rotation, flipping, and horizontal and vertical shifts, to ensure
the effectiveness and faster convergence of the model to be trained.

As mentioned above, the proposed model is much lighter than the
corn grain classification architecture proposed by Velesaca et al.
(2020), with which the extraction process of the most relevant charac-
teristics is carried out more effectively. Results from the proposed light-
weight network, CK-CNNLW, can be seen in Table 5 and Table 6, for the
Table 6
Results of classification stage for the three-class scenario.

Network Good Def. Imp. Avg. Avg. Test Time # of Net.

Corn Corn Acc per Image (sec) Param.

Mask R-CNN 0.960 0.695 0.286 0.647 0.0140 63,738 K
VGG16 0.974 0.876 0.819 0.890 0.0112 134,272 k
ResNet50 0.986 0.860 0.931 0.925 0.0121 23,593 K
CK-CNN 0.979 0.900 0.973 0.956 0.0095 3306 K
CK-CNNLW 0.990 0.930 0.986 0.967 0.0075 597 K



Fig. 5. ROC curves of the proposed CK-CNNLW architecture for the three-class classification case.
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classification problem of two and three classes respectively. These ta-
bles show the results of the proposed architecture together with the re-
sults of the state-of-the-art models, such as the Mask R-CNN He et al.
(2017), VGG-16 Simonyan and Zisserman (2015), ResNet-50 He et al.
(2016) and CK-CNN Velesaca et al., 2020. As can be seen, the proposed
architecture shows better quantitative results than all the previous ap-
proaches. Furthermore, it should be noted that the proposed architec-
ture requires almost six times fewer parameters than our previous
approach (CK-CNN Velesaca et al. (2020)) and more than forty times
fewer parameters than the rest of the architectures.

In addition to the quantitative values presented in previous tables,
the ROC curves corresponding to the results obtainedwith the proposed
architecture for the three-class classification case are depicted in Fig. 5.
Fig. 6. ROC curves of the CK-CNN and the proposed CK-CNNLWmo
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Figs. 6, 7 and 8 present comparisons of ROC curves for the defective, im-
purity, and good corn classes between the proposed approach and our
previous work (CK-CNN Velesaca et al. (2020)). It can be appreciated,
in all the cases, that the proposed approach reaches a higher perfor-
mance and precision when compared with CK-CNN Velesaca et al.
(2020).

5. Conclusions

This paper presents a novel approach to classify clusters of touching
corn kernels, which may contain good and defective kernels together
with impurities; it consists first of a simple but efficient strategy to
avoid the time-consuming annotation task for training the instance
del for the defective corn class (three-class classification case).



Fig. 7. ROC curves of the CK-CNN and the proposed CK-CNNLWmodel for the impurity class (three-class classification case).

Fig. 8. ROC curves of the CK-CNN and the proposed CK-CNNLW model for the good corn class (three-class classification case).
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segmentation Mask R-CNN algorithm. Results obtained by the Mask
R-CNN network trained with synthetized datasets reach better perfor-
mance, both IoU and AP than when training with manually annotated
images. Then, as a second contribution, a novel and lightweight network
is proposed (CK-CNNLW) to classify the obtained instances. This net-
work is considerably lighter than previous approaches (six times
fewer parameters than our previous approach and more than forty
times fewer parameters than other state-of-the-art architectures).
Furthermore, obtained results show better performance than all previ-
ous approaches. In future workwewill try to develop our own segmen-
tation model, trying to obtain a lightweight architecture. Additionally,
we plan to extend the proposed solution to other types of grains.
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