|
Patricia L. Suarez, Angel D. Sappa, Boris X. Vintimilla, & Riad I. Hammoud. (2019). Image Vegetation Index through a Cycle Generative Adversarial Network. In Conference on Computer Vision and Pattern Recognition Workshops (CVPR 2019); Long Beach, California, United States (pp. 1014–1021).
Abstract: This paper proposes a novel approach to estimate the
Normalized Difference Vegetation Index (NDVI) just from
an RGB image. The NDVI values are obtained by using
images from the visible spectral band together with a synthetic near infrared image obtained by a cycled GAN. The
cycled GAN network is able to obtain a NIR image from
a given gray scale image. It is trained by using unpaired
set of gray scale and NIR images by using a U-net architecture and a multiple loss function (gray scale images are
obtained from the provided RGB images). Then, the NIR
image estimated with the proposed cycle generative adversarial network is used to compute the NDVI index. Experimental results are provided showing the validity of the proposed approach. Additionally, comparisons with previous
approaches are also provided.
|
|
|
Armin Mehri, & Angel D. Sappa. (2019). Colorizing Near Infrared Images through a Cyclic Adversarial Approach of Unpaired Samples. In Conference on Computer Vision and Pattern Recognition Workshops (CVPR 2019); Long Beach, California, United States (pp. 971–979).
Abstract: This paper presents a novel approach for colorizing
near infrared (NIR) images. The approach is based on
image-to-image translation using a Cycle-Consistent adversarial network for learning the color channels on unpaired dataset. This architecture is able to handle unpaired datasets. The approach uses as generators tailored
networks that require less computation times, converge
faster and generate high quality samples. The obtained results have been quantitatively—using standard evaluation
metrics—and qualitatively evaluated showing considerable
improvements with respect to the state of the art
|
|
|
Wilton Agila, Ricardo Cajo, & Douglas Plaza. (2015). Experts Agents in PEM Fuel Cell Control. In 4ta International Conference on Renewable Energy Research and Applications (pp. 896–900). Palermo, Italy: IEEE.
Abstract: In the control of the PEM (Proton Exchange Membrane) fuel cell, the existence of both deliberative and reactive processes that facilitate the tasks of control resulting from a wide range of operating scenarios and range of conditions it is required. The latter is essential to adjust its parameters to the multiplicity of circumstances that may occur in the operation of the PEM stack. In this context, the design and development of an expert-agents based architecture for autonomous control of the PEM stack in top working conditions is presented. The architecture integrates perception and control algorithms using sensory and context information. It is structured in a hierarchy of levels with different time window and level of abstraction. The monitoring model and autonomic control of PEM stack has been validated with different types of PEM stacks and operating conditions demonstrating high reliability in achieving the objective of the proposed energy efficiency. Dynamic control of the wetting of the membrane is a clear example.
|
|
|
Cristhian A. Aguilera, Angel D. Sappa, & Ricardo Toledo. (2017). Cross-Spectral Local Descriptors via Quadruplet Network. In Sensors Journal, Vol. 17, pp. 873.
|
|
|
Jorge L. Charco, A. D. S., Boris X. Vintimilla. (2022). Human Pose Estimation through A Novel Multi-View Scheme. In Proceedings of the International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications VISIGRAPP 2022 (Vol. 5, pp. 855–862).
Abstract: This paper presents a multi-view scheme to tackle the challenging problem of the self-occlusion in human
pose estimation problem. The proposed approach first obtains the human body joints of a set of images,
which are captured from different views at the same time. Then, it enhances the obtained joints by using a
multi-view scheme. Basically, the joints from a given view are used to enhance poorly estimated joints from
another view, especially intended to tackle the self occlusions cases. A network architecture initially proposed
for the monocular case is adapted to be used in the proposed multi-view scheme. Experimental results and
comparisons with the state-of-the-art approaches on Human3.6m dataset are presented showing improvements
in the accuracy of body joints estimations.
|
|
|
Patricia Suarez, A. D. S. (2024). A Generative Model for Guided Thermal Image Super-Resolution. In 19th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, VISIGRAPP 2024 Rome 27 – 29 Febraury 2024 (Vol. Vol. 3: VISAPP, pp. 765–771).
|
|
|
Silva Steven, P. D., Verdezoto Nervo, Hernandez Juan David. (2022). TOWARDS ONLINE SOCIALLY ACCEPTABLE ROBOT NAVIGATION. In IEEE INTERNATIONAL CONFERENCE ON AUTOMATION SCIENCE AND ENGINEERING, (Vol. 2022-August, pp. 707–714).
|
|
|
Rafael E. Rivadeneira, A. D. S. and B. X. V. (2022). Multi-Image Super-Resolution for Thermal Images. In Proceedings of the International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications VISIGRAPP 2022 (Vol. 4, pp. 635–642).
|
|
|
Miguel A. Murillo, J. E. A., & Miguel Realpe. (2021). Beyond visual and radio line of sight UAVs monitoring system through open software in a simulated environment. In The 2nd International Conference on Applied Technologies (ICAT 2020), diciembre 2-4. Communications in Computer and Information Science (Vol. 1388, pp. 629–642).
Abstract: The problem of loss of line of sight when operating drones has be-come a reality with adverse effects for professional and amateur drone opera-tors, since it brings technical problems such as loss of data collected by the de-vice in one or more instants of time during the flight and even misunderstand-ings of legal nature when the drone flies over prohibited or private places. This paper describes the implementation of a drone monitoring system using the In-ternet as a long-range communication network in order to avoid the problem of loss of communication between the ground station and the device. For this, a simulated environment is used through an appropriate open software tool. The operation of the system is based on a client that makes requests to a server, the latter in turn communicates with several servers, each of which has a drone connected to it. In the proposed system when a drone is ready to start a flight, its server informs the main server of the system, which in turn gives feedback to the client informing it that the device is ready to carry out the flight; this way customers can send a mission to the device and keep track of its progress in real time on the screen of their web application.
|
|
|
Rosero Vasquez Shendry. (2020). Facial recognition: traditional methods vs. methods based on deep learning. Advances in Intelligent Systems and Computing – Information Technology and Systems Proceedings of ICITS 2020.615–625.
|
|