|
Omar Coello, M. C., Darío Carpio, Boris X. Vintimilla & Luis Chuquimarca. (2024). Enhancing Apple’s Defect Classification: Insights from Visible Spectrum and Narrow Spectral Band Imaging. In 14th International Conference on Pattern Recognition Systems (ICPRS) Londres 15 – 18 July 2024.
|
|
|
Ortiz J., Londono J., Novillo F., Ampuno A., & Chávez M. (2015). Determinación de Invariantes en Grandes Centros de Datos basados en Topología Fat-Tree. Revista Politécnica, Vol. 35, pp. 91–96.
Abstract: Durante los últimos años ha existido un fuerte incremento en el acceso a internet, causando que los centros de datos ( DC) deban adaptar dinámicamente su infraestructura de red de cara a enfrentar posibles problemas de congestión, la cual no siempre se da de forma oportuna. Ante esto, nuevas topologías de red se han propuesto en los últimos años, como una forma de brindar mejores condiciones para el manejo de tráfico interno, sin embargo es común que para el estudio de estas mejoras, se necesite recrear el comportamiento de un verdadero DC en modelos de simulación/emulación. Por lo tanto se vuelve esencial validar dichos modelos, de cara a obtener resultados coherentes con la realidad. Esta validación es posible por medio de la identificación de ciertas propiedades que se deducen a partir de las variables y los parámetros que describen la red, y que se mantienen en las topologías de los DC para diversos escenarios y/o configuraciones. Estas propiedades, conocidas como invariantes, son una expresión del funcionamiento de la red en ambientes reales, como por ejemplo la ruta más larga entre dos nodos o el número de enlaces mínimo que deben fallar antes de una pérdida de conectividad en alguno de los nodos de la red. En el presente trabajo se realiza la identificación, formulación y comprobación de dos invariantes para la topología Fat-Tree, utilizando como software emulador a mininet. Las conclusiones muestran resultados concordantes entre lo analítico y lo práctico.
|
|
|
P. Ricaurte, C. Chilán, C. A. Aguilera-Carrasco, B. X. Vintimilla, & Angel D. Sappa. (2014). Performance Evaluation of Feature Point Descriptors in the Infrared Domain. In Computer Vision Theory and Applications (VISAPP), 2014 International Conference on, Lisbon, Portugal, 2013 (Vol. 1, pp. 545–550). IEEE.
Abstract: This paper presents a comparative evaluation of classical feature point descriptors when they are used in the long-wave infrared spectral band. Robustness to changes in rotation, scaling, blur, and additive noise are evaluated using a state of the art framework. Statistical results using an outdoor image data set are presented together with a discussion about the differences with respect to the results obtained when images from the visible spectrum are considered.
|
|
|
Pabelco Zambrano, F. C., Héctor Villegas, Jonathan Paillacho, Doménica Pazmiño, Miguel Realpe. (2023). UAV Remote Sensing applications and current trends in crop monitoring and diagnostics: A Systematic Literature Review. In IEEE 13th International Conference on Pattern Recognition Systems (ICPRS) 2023, 4-7 julio 2023.
|
|
|
Patricia L. Suarez. (2020). Procesamiento y representación de imágenes multiespectrales usando técnicas de aprendizaje profundo (Ph.D. Angel Sappa, Director & Ph.D. Boris Vintimilla, Codirector.). Ph.D. thesis. In Ediciones FIEC-ESPOL..
|
|
|
Patricia L. Suárez, A. D. S. and B. X. V. (2021). Deep learning-based vegetation index estimation. In Generative Adversarial Networks for Image-to-Image Translation Book. (Vol. Chapter 9, pp. 205–232).
|
|
|
Patricia L. Suárez, A. D. S., Boris X. Vintimilla. (2021). Cycle generative adversarial network: towards a low-cost vegetation index estimation. In IEEE International Conference on Image Processing (ICIP 2021) (Vol. 2021-September, pp. 2783–2787).
Abstract: This paper presents a novel unsupervised approach to estimate the Normalized Difference Vegetation Index (NDVI).The NDVI is obtained as the ratio between information from the visible and near infrared spectral bands; in the current work, the NDVI is estimated just from an image of the visible spectrum through a Cyclic Generative Adversarial Network (CyclicGAN). This unsupervised architecture learns to estimate the NDVI index by means of an image translation between the red channel of a given RGB image and the NDVI unpaired index’s image. The translation is obtained by means of a ResNET architecture and a multiple loss function. Experimental results obtained with this unsupervised scheme show the validity of the implemented model. Additionally, comparisons with the state of the art approaches are provided showing improvements with the proposed approach.
|
|
|
Patricia L. Suárez, D. C., and Angel Sappa. (2021). Non-Homogeneous Haze Removal through a Multiple Attention Module Architecture. In 16 International Symposium on Visual Computing. Octubre 4-6, 2021. Lecture Notes in Computer Science (Vol. 13018, pp. 178–190).
|
|
|
Patricia L. Suarez, D. C., Angel D. Sappa. (2024). Enhancement of Guided Thermal Image Super-Resolution Approaches (Vol. 573).
|
|
|
Patricia L. Suarez, D. C., Angel D. Sappa and Henry O. Velesaca. (2022). Transformer based Image Dehazing. In 16TH International Conference On Signal Image Technology & Internet Based Systems SITIS 2022. (pp. 148–154).
|
|