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Abstract

Autonomous vehicles have a large number of on-board sensors, not only for pro-

viding coverage all around the vehicle, but also to ensure multi-modality in the

observation of the scene. Because of this, it is not trivial to come up with a sin-

gle, unique representation that feeds from the data given by all these sensors. We

propose an algorithm which is capable of mapping texture collected from vision

based sensors onto a geometric description of the scenario constructed from data

provided by 3D sensors. The algorithm uses a constrained Delaunay triangulation

to produce a mesh which is updated using a specially devised sequence of oper-

ations. These enforce a partial configuration of the mesh that avoids bad quality

textures and ensures that there are no gaps in the texture. Results show that this

algorithm is capable of producing fine quality textures.
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1. Introduction

Autonomous vehicles often have a very large number of sensors mounted on-

board. This is due to the need to observe the environment all around the vehicle,

but in addition to that because there is the need to observe the scene with sensors

of different nature. Mainly, sensors are divided into two groups: range sensors

and vision based sensors. Sensors of the first group provide 3D measurements of

the scene. On the other hand, vision based sensors collect photometric informa-

tion of the scene. Due to the large number of sensors on-board these vehicles, it

is not trivial to combine data from these sensors into a unique representation of

the scene. Given that these sensors provide a continuous stream of data over time,

and that they are displaced by the movement of the vehicle, then it follows that the

representation of the scene must also be dynamic, in the sense that it must evolve

to represent novel information collected at later stages of the mission. Note that,

given a continuous throughput of images, the most recent image is not necessar-

ily the best image to be used for texture mapping. For example, if the vehicle is

moving away from an object, a camera on the rear side of the vehicle will produce

images with decreasing quality. Rather, what is required is an algorithm that pro-

duces a scene representation at the early stages of a mission (because this might

be immediately required for other tasks such as navigation, planning, etc.), but the

later on is also capable of evaluating newly acquired images to assess whether or

not these images are better than the previously used for mapping the texture. We

refer to this as incremental texture mapping.

In [1], an algorithm for creating and incrementally updating a geometrical rep-
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resentation of the scenario is presented. This work was later extended in [2]. The

approach is based on Geometric Polygonal Primitives (GPP), and is shown to be

capable of providing an accurate geometric description of the scenario. It uses

data from range sensors only, and the geometric description changes to accom-

modate novel sensor data. In this paper we use the results given by the approach

described in [2]. This means that we consider that there is, at all times, a geometric

description of the scenario which is constantly evolving.

In this paper, we focus on how the vision based sensors can be used to enrich

the description of the scenario. In other words, we propose to use the images

from the cameras on-board the vehicle to produce texture, which may be added

to the 3D description of the environment. Note that, as in the case of the range

sensors, the vision based sensors also produce a continuous stream of information

which must be integrated in order to create a unique photometric description of the

scenario. In this paper, we propose an approach which is capable of incrementally

updating texture mapped onto GPPs. The following lines show an example in

which the need for incremental texture mapping becomes clear.

For testing and evaluation purposes, we use a data-set from the Massachusetts

Institute of Technology (MIT) Team, taken from their participation in the DARPA

Urban Challenge [3]. A small 40 seconds sequence was cropped from the MIT

data-set. This sequence is referred to as the MIT sequence, and five key locations

(A through E where marked in the sequence (see [2] for details). The approach de-

scribed in [2] produces a description of the geometric structure of the environment

observed by the vehicle’s sensors. This description is given in the form of Geo-

metric Polygonal Primitives (GPP), i.e., a list of polygons. Note that, as pointed

out in [2] the geometric description of the scene is dynamic, since it may change
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Figure 1: An example from the MIT data-set: three projections are collected over a period of time

and mapped to a wall panel (GPP k = 4, in blue): (a) positions of the vehicle at the time each

projection is collected; (b) image from front camera, at location C; (c), front camera, intermediate

location; (d) front camera, location D; (e) left camera, location D.

whenever novel sensor information is collected.

An example is presented in Fig. 1 where the vehicle travels from location C to

location D of the MIT sequence. Images are collected at three locations: location

C at mission time t0, location D at mission time t2 and an intermediate location
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between those two at mission time t1 (Fig. 1 (a) shows the vehicle at each loca-

tion). Consider a camera of index l, that produces an image which may virtually

be projected to any GPP (i.e., to one of the polygons that constitute the geometric

description of the scene), at any given mission time t. The term projection is de-

fined as an image captured from a camera that can be used to map some texture

to one of the polygons contained in the geometric description of the scene, and

is denoted as C{k,l,t}. The data-set contains five color cameras (see [2, 4] for de-

tails). Without loss of generality, in this example only images from two cameras

are used: front center (l = 0) and front left (l = 3), and only a single GPP (index

k = 4) is employed, which corresponds to the wall panel in front of the vehicle

(in blue, left side of Fig. 1 (a)). Note that, under the constraints defined above,

i.e., k = {4}, l = {0,3} and t = {t0, t1, t2}, there are a total of six possible pro-

jections. However, two of these projections are empty, namely C{k=4,l=3,t=t0} and

C{k=4,l=3,t=t1}. This is because the left camera (l = 3) does not see the wall panel

(k = 4) in the first two locations (t = t0 and t = t1). This can be observed in Fig.

1 (a), which shows that the vehicle turns right at location D, and only then the

left side camera is pointed in the direction of the wall panel. The images from the

remaining four projections are shown in Figs. 1 (b), (c), (d) and (e). As the vehi-

cle approaches the wall panel, it collects images with higher resolution and better

quality of that surface. Our goal is to study how a low resolution texture created

when the vehicle was distant from the surface may evolve to a higher resolution

texture once the vehicle comes closer to the panel. In other words, how can the

texture of a surface be incrementally refined.

Note that we assume that an accurate localization is available at all times.

In the case of the MIT dataset, localization is provided by an Applanix POS-LV
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220 system 1, which includes a GPS, an inertial measurement unit and a wheel

encoder. This is a very accurate system which publishes the 6 DOF pose of the

vehicle at high frequencies (100Hz). Thus, it is possible to gather the pose of each

of the onboard cameras at any point in time. Obviously, a less accurate ego motion

estimation should influence the mapping of texture. However, a detailed analisys

of the impact of other ego motion estimation systems is out of the scope of the

current paper.

The remainder of the paper is organized as follows: related work is presented

in section 2; the proposed approach is described in section 3 and, finally, results

and conclusions are given in sections 4 and 5.

2. Related Work

Texture mapping is a technique for mapping a 2D image onto a 3D surface

by transforming color data so that it conforms to the surface plot. It allows the

application of texture such as tiles or wood grain, to a surface without performing

the geometric modeling necessary to create a surface with these features, or, in

other words, without computing the projection of every pixel in the image onto

the surface. The color data can also be any image, such as a picture taken by a

camera. Texture mapping is performed over convex polygons, most commonly

on triangles. Let X1, X2 be the coordinates of the vertices 1 and 2 in 3D space.

The coordinates u1, u2 of the pixels that correspond to those vertices in the image

plane can be obtained using direct projection:

ui = projection(Xi), ∀i ∈ {1,2}. (1)

1http://www.applanix.com/products/land/pos-lv.html
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Let α be a parameter 0 < α < 1, that indicates how a given vertex is positioned

along the X1X2 line segment. Texture mapping interpolates the color value for

any vertices along the line segment as follows:

uα = (1−α) ·u0 +α ·u1, (2)

which is of course a linear interpolation. When this kind of linear interpolation

is used, the texture mapping is referred to as affine texture mapping. A linear

interpolation works fine when the image plane and the projection plane are paral-

lel. However, when this does not occur, the projection shows some artifacts that

derive from the assumption that a linear interpolation can be used. This is a well

documented problem, and is discussed in several works [5, 6]. The solution to

this problem is called view dependent texture mapping, and it consists of making

texture mapping account for the position of the vertexes in 3D space, rather than

simply interpolating a 2D triangle. This achieves the correct visual effect, but it

is slower to calculate. Instead of interpolating the texture coordinates directly, the

coordinates are divided by their depth (relative to the viewer), and the reciprocal

of the depth value is also interpolated and used to recover the perspective cor-

rected coordinate. This correction operates so that in parts of the polygon that are

closer to the viewer, the difference from pixel to pixel between texture coordinates

is smaller (stretching the texture wider), and in parts that are farther away this dif-

ference is larger (compressing the texture). View dependent texture mapping can

be formulated as:

uα =
(1−α) · u0

w0
+α · u1

w1

(1−α) · 1
w0

+α · 1
w1

. (3)

The solution proposed in eq. (3) is capable of producing accurate mapping for

texture. View dependent texture mapping is significantly slower when compared
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to affine texture mapping.

Since triangles are the atomic entities of texture mapping, triangulation method-

ologies are an important part of the process. In this scope, Data Dependent Trian-

gulation (DDT) algorithms are of particular interest since they can produce trian-

gulated meshes which are ideal for texture mapping. The goal of a DDT is, on the

one hand, to obtain the best approximation possible, and on the other to reduce

the number of triangles and in turn the memory load. Consequently, the number

of vertices should be kept as small as possible to speed up processing and reduce

memory load. The two variables that should be tuned to achieve a good approx-

imation are then the position of the vertices and the connections between them.

Even if we decide to fix the number of triangles and vertices, the possible com-

binations of the connections between vertices are usually very large. Hence, an

exhaustive search of all possible combinations is not possible. Also, no assump-

tions should be made on the optimal shape or size of the triangles. One might

tend to assume long, thin triangles are not adequate but in fact that depends on

the nature of the image [7]. If the image contains high gradient long feature such

as poles or trees, such triangles could be well suited to represent these regions.

DDT algorithms can be divided into refinement, decimation, or modification ap-

proaches. In refinement approaches, the starting point for the algorithm is a very

coarse triangular mesh that is then refined. The mesh is refined by inserting new

vertices. Since the number of possible positions where vertices can be inserted

is very high, authors make use of heuristics to limit the number of options. The

greedy refinement algorithm proposed in [8] works by inserting vertices into a

triangulated mesh. In every step, a new vertex is inserted at the position of the

largest distance between the approximation and the data provided in the image.
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In [9], the choice of which are the triangles to decimate is based on the high cur-

vature of the data, and the positions where new vertices are to be inserted are

locations with high proximity to the data. These methods have the drawback of

tending to a local optima. Decimation approaches are the opposite of refinement

meshes. The algorithms start from a very fine mesh and try to remove vertices and

collapse triangles as they iterate. In [10] the initial triangulation is a full triangu-

lation where each pixel is a vertex in the mesh. The algorithm then decimates the

mesh by collapsing one of the edges of the mesh. The edge to collapse is the one

that implicates less increase in the approximation error. Similar approaches were

proposed in [11] and [12]. Finally, modification strategies start from a random ar-

bitrary mesh and try to improve it by performing modification operations. These

modification operations usually are edge swaps and the number of vertices in the

initial mesh remains the same. It is the case of the algorithms proposed in [13]

and [14]. Both propose different criteria for the selection of which are the edges

that should be swapped.

Given a triangulated mesh of a surface and an image registered to that surface,

it is possible to map the texture from the image onto the surface using classic tex-

ture mapping approaches. Figure 2 shows the triangulated meshes and textures

produced using classical texture mapping, for each of the four projections dis-

played in Fig. 1. These mappings are computed independently for each location.

As expected, textures that derive from projections taken closer to the surface (e.g.,

Fig. 2 (c) and (d)) have better quality when compared to projections taken far

away from the surface (e.g., Fig. 2 (a) and (b)).

The question is how to create an unique triangulated mesh and texture and

how it should be updated with local triangulated meshes from novel projections.
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(a)

(b)

(c)

(d)

Figure 2: Triangulated meshes (top) and textures (bottom) created separately for each of the projec-

tions shown in the example of Fig. 1: (a) front camera, location C; (b) front camera, intermediate

location; (c) front camera, location D; (d) left camera, location D.

Lets assume that there is a way of assessing the quality of each projection and in

particular of each triangle in each mesh, so that it is possible to rank the triangles

with respect to their quality. At first sight, several strategies can be used to fuse

the textures, namely: (1) average the textures produced by local meshes; (2) insert
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vertices from new triangles into the existing mesh and re triangulate, provided

that these triangles yield better quality; (3) remove the triangles of the existing

mesh that overlap the triangle (of better quality) to be inserted, and then insert the

triangle.

Option (1) consists of averaging the textures provided by each local mesh.

This could be achieved by setting the alpha channel of all local meshes so that

they average out. Additionally, the average could be weighted by the quality of

the triangles, although this was not tested in this work. The primitive would have

several layers, each with a given local triangulated mesh belonging to each pro-

jection. Figure 3 (a) shows the results obtained using this strategy. Visually, re-

sults are not appealing. Another disadvantage concerns the need to store all local

meshes, which is highly inefficient in terms of memory. As seen in Fig. 2, there

are textures with much better quality than others. To average good textures with

bad textures does not seem to make sense.

Option (2) proposes to address the problem by considering the vertices of the

meshes only (rather than the triangles). Each vertex in the new mesh is added to

the current mesh. This results in a super mesh containing all the vertices of the two

previous meshes in which the triangles (the configuration of the mesh) are defined

arbitrarily. The idea is to fuse using an additive strategy. Figure 3 (b) shows the

results obtained using this approach. Again, results are not visually appealing.

In option (3), an alternative to averaging is considered: a winner takes all strat-

egy. The idea is to select, for each region in the surface, a single triangle which

will provide the texture. This selection can be done using the quality of each tri-

angle. Note that, whenever a triangle to be inserted overlaps some triangles in the

existing mesh, these triangles must first be removed so that the mesh preserves its
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(a)

(b)

(c)
Figure 3: Textures obtained using different fusion strategies: (a) option (1), average textures from

local meshes; (b) option (2), insert vertices from all local meshes; (c) option (3), insert triangles

of better quality, removing overlapping triangles.

configuration and thus the quality of the texture mapping. Results obtained from

this method are shown in Fig. 3 (c). Textures are visually appealing. Artifacts

present in the average and the additive strategies are not visible. There is one

problem however: removed triangles often overlap triangles to be inserted in just

a portion of their area (partial overlap). When deleted, these triangles leave empty

spaces where no texture is defined. This is visible in Fig. 3 (c).

None of the strategies discussed provides textures of sufficient quality. Thus

the problem of incrementally updating the texture is not trivial. In the following

sections, an approach is presented which is capable of generating higher quality

textures.
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3. Proposed Approach

Figure 4 shows a diagram which describes the functioning of the system. The

following sections will describe these components in detail. First, a one-shot tex-

ture mapping based in DDT is presented in section 3.1. Here, we propose an

algorithm based on the extraction of edges in the image and the construction of a

constrained Delaunay triangulation, which is operated as a DDT and is very ef-

ficient. Then, the incremental texture mapping approach is presented in section

3.2. In this case, we propose a sequence of atomic operations to conduct the in-

sertion of a new triangle in a triangulated mesh, which minimizes the changes in

the configuration of the mesh.

3.1. One-shot texture mapping using Data Dependent Triangulation

In this paper, we propose an alternative solution to view dependent texture

mapping. One reason for this is that the objective of this work is to develop a

mechanism for mapping texture from images onto GPP (see [2]). Those geometric

primitives consist of polygons, instead of the traditional triangles. The mapping of

photometric properties can be performed by mapping triangles in image space to

3D space. These procedures are executed in Graphical Processing Units (GPUs),

and programmed using OpenGL [15], Direct3D [16] or other graphics libraries.

These libraries also have the functionalities of mapping convex polygons, but in

fact these are mere high level functions that decompose the polygons in an ar-

bitrary way into sets of triangles and then map texture onto those triangles. We

argue that, if we control the process of triangulation in such a way that the edges

in the images used in the projection are aligned with the edges of the triangles in

3D space, the distortion produced by linear texture mapping is not visible, and
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Figure 4: A diagram showing the main components of the proposed system.

thus, linear texture mapping may be used instead of view dependent triangulation,

which is much slower. In other words, if the triangles are especially defined so

that their faces represent smooth regions with constant color then, a linear texture

mapping over these could in fact provide accurate projections. This procedure of
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creating a triangulated mesh which accommodates some input data is called DDT

[17], and the mapping of images using this technique will be referred to as DDT

mapping as opposed to texture mapping. Unlike in standard texture mapping ap-

proaches, where the triangulation is executed in the 3D space, DDT triangulation

operates in the image space, and only after those 2D triangles are mapped onto

the 3D space.

Although there are many approaches in the literature to the data dependent tri-

angulation problem, most of them are focused on the fact that such a triangulated

mesh is capable of producing very good data compression ratios with respect to

the real image, while still maintaining low approximation errors. Real time per-

formance of the algorithms has seldom been debated, with authors reporting pro-

cessing times of over three seconds for 512×512 images. The exception was the

study conducted in [18], where DDT was parallelized, resulting in a significant

speed up. We propose a simple procedure similar to [12]: edges are detected us-

ing a Hough lines detector [19] extended to obtain a description of line segments

instead of lines (e.g., see [20] [21]). The triangulation is a Delaunay triangulation

[22]: let the image be described by M line segments with starting points sm and

endpoints em, where each detected line segment is defined as smem. The Delau-

nay triangulation (Delaunay) receives the starting and endpoints as input to define

the vertices of the triangulated mesh:

t= Delaunay
(
{s0,e0,s1,e1, · · · ,sM−1,eM−1}

)
, (4)

where t is the resulting triangulated mesh. A constrained Delaunay triangulation

is a generalization of the Delaunay triangulation where line segments may be im-

posed as belonging to the triangulated mesh (initially proposed by [23] for 2D

spaces, later generalized to N dimensional spaces by [24]). A constrained Delau-
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nay triangulation (cDelaunay) requires two inputs, a list of points and a list of line

segments (also called constraints):

t= cDelaunay
(
{s0,e0, · · · ,sM−1,eM−1},{s0e0, · · · ,sM−1eM−1}

)
. (5)

In brief, what we propose is a technique in which a constrained Delaunay

triangulation is executed on the image space, having as input the line segments

given by a line segment detection algorithm based on hough lines.

3.2. Incremental texture mapping

Section 3.1 described how a constrained Delaunay triangulation may be used

to produce a data dependent triangulated mesh that conforms with edges previ-

ously detected in the image. Note that this is a one-camera, one-shot approach,

since it does not consider how to map more than one image. In reality, there is

always a large set of images available to use for texture mapping, either from mul-

tiple cameras or from a unique camera at different times. This section addresses

this problem of merging multiple projections into a single representation. As de-

scribed in section 3.1, a DDT triangulation is executed for each image used in a

projection. Thus, there will be a triangulated mesh (a list of triangles) for each

image (for each projection), to which we refer as local triangulated mesh. Local

triangulated meshes for the example of Fig. 1 are shown in Fig. 2.

Let M be the global triangulated mesh, defined in R2, so that only one global

mesh exists per each primitive. This global mesh should be updated when new

projections are collected or, in other words, when novel local meshes are received,

i.e. it should contain the result of the fusion of the several textures. A local trian-

gulated mesh from projection index j = {k, l, t} (i.e., form a given combination of

k, l, t) is denoted as T j. Local triangulated meshes contain T j number of triangles.
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Individual triangles are denoted as T j
i ,∀i ∈ {0,1, · · · ,T {k,l,t}}, when indicating

the ith triangle of the local mesh j, or as T j
{v1,v2,v3}, in the case the vertices v1,

v2 and v3 are specified. Likewise, triangles in the global mesh are notated as

Mn,∀n ∈ {0,1, · · · ,N}, where N is the number of triangles in the global mesh.

When the vertices of the triangles are specified, then the notation M{V1,V2,V3} is

used.

To continuously fuse local triangulated meshes from new projections onto the

global mesh, we propose a mechanism which iterates all the triangles in the local

projection mesh and decides whether they should be inserted in the global mesh

by computing the benefit of this operation to the overall quality of the global mesh.

At iteration i, triangle T j
i from the local projection mesh is referred to as candidate

triangle. First, the algorithm assesses if there is overlap between (T j
i ) and any of

the existing triangles in the global mesh Mn,∀n∈ {0,1, · · · ,N}. Let intr(A,B) be a

function that tests intersection between triangles A and B. The test can be written

as:

do_intersect = intr
(
T j
{V1,V2,V3},Mn

)
,∀n ∈ {0,1, · · · ,N}, (6)

where N corresponds to the total number of triangles in the global mesh M. The

intersection of two triangles can result in an empty set, whenever there is no inter-

section, in a point, a line segment, or a polygon. There are several approaches to

triangle triangle intersection tests, that provide fast and efficient algorithms [25]

[26] [27]. Note that there is a distinction between overlap and intersection: what

must be assessed is whether or not an insertion of the candidate triangle onto the

global mesh will change its configuration. Thus, an overlap test is not the same

as an intersection test, since there are some cases where the triangles do inter-

sect but the mesh configuration is not altered. The overlap test is based on a set
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of rules that analyse the return of the intersection function (intr, implementation

from [28]), between candidate triangle T j
i and global mesh triangle M{V1,V2,V3}. It

returns yes if the triangles overlap or no otherwise. The algorithm is detailed in

eqs. (7), (8) and (9):

no ⇐ intr
(
T j

i ,M{V1,V2,V3}

)
=∅

yes ⇐ intr
(
T j

i ,M{V1,V2,V3}

)
= list of polygons

Goto(8) ⇐ intr
(
T j

i ,M{V1,V2,V3}

)
= points X

Goto(9) ⇐ intr
(
T j

i ,M{V1,V2,V3}

)
= line segment L

(7)

where X = {X0,X1, · · · ,XN} and L = {S0E0, · · · ,SNEN};no ⇐∃Vg:Vg=Xo,∀Vg∈{V1,V2,V3},∀o∈{0,1,··· ,N}

yes ⇐ otherwise
(8)

no ⇐∃Vg:Vg=So ∧∃Vh:Vh=Eo,∀Vg,Vh∈{V1,V2,V3},∀o∈{0,1,··· ,N}

yes ⇐ otherwise
(9)

Figure 5 (a) shows a global primitive mesh M that contains a single triangle

(in blue), and a candidate triangle (in red). In each case, the geometries returned

by the intersection function are as follows: an empty set (d), points (a) and (e),

line segments (b) and (f ), and polygons (c). If we consider the cases where the

insertion of the candidate triangle (in red) does not change the configuration of the

already existing global mesh (in this case, the initial global mesh is composed of

a single triangle, in blue), we can say that in case (a), (b) and (c) the mesh would

be altered, and that, in cases (d), (e) and (f ) the mesh would remain unaltered.

The overlap test returns a list L of indices of triangles from the global mesh which
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(a) (b)

(c) (d)

(e) (f )

Figure 5: Triangle overlap test: (a) intersection returns points, overlap true; (b) intersection returns

line segments, overlap true; (c) intersection returns polygons, overlap true; (d) intersection returns

empty, overlap false; (e) intersection returns points, overlap false; (f ) intersection returns line

segments, overlap false;
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overlap with the candidate triangle. From this, the benefit of inserting the candi-

date triangle in the global mesh is assessed. In this context, benefit is defined as

an improvement in the quality of texture and estimated as follows:
beneficial⇐ L is empty

otherwise

beneficial, ⇐ q(T j
i )> α ·max

(
q(Mg)

)
, ∀g ∈ L

not beneficial, ⇐ otherwise

(10)

where α ≥ 1 is a user defined cost parameter, which defines how much better the

quality of candidate triangle must be to any other triangle it overlaps, in order

for the insertion to be considered beneficial, and q(·) is an arbitrary function that

returns the estimated quality of each triangle. In this work we define quality as

directly proportional to the resolution of the texture. An image provides a texture

of higher resolution when it is closer to the GPP. In addition to this, the focal

distance of the camera should be taken into account. Thus, the quality of a triangle

T j={k,l,t} is proposed as follows:

q
(
T{k,l,t}

)
=

fl

D{k,l,t}
, (11)

where fl is the focal distance of camera index l and D{k,l,t} is the distance between

the camera l and the GPP k computed at time t.

When the insertion of a candidate triangle is considered to be beneficial, the

next step is to execute the insertion in the global mesh. The global primitive

mesh is built as a constrained Delaunay triangulation. Hence, a description of the

mesh contains a set of vertices, edges and constraints (implementation from [22]

is used). After insertion, the candidate triangle should be preserved on the updated

mesh (since it had a larger quality than any global mesh triangle it overlapped).
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The configuration of all other non overlapped global mesh triangles should also be

preserved. In order to comply with those objectives, the insertion of a candidate

triangle is composed of a set of atomic operations executed in sequence. Figure

6 will be used to demonstrate why the proposed set of operations is required, by

comparing it to other possibilities. Figure 6 (a) shows the initial situation: an

existing mesh in blue must be altered by the insertion of a candidate triangle in

red. The blue triangle has all three edges constrained (blue squares, in Fig. 6 (a)).

Let insert(V,M) be a function that inserts vertex V into mesh M.

M∗ = insert
(
V,M

)
, ∀V ∈ {Va,Vb,Vc}, (12)

where M∗ is the updated mesh. Figure 6 (b) shows the updated mesh after the

insertion of the three vertices, indices 4,5 and 6 (see vertices indices in the Fig. 6).

The updated mesh does not preserve the configuration of the candidate triangle.

In other words, there is no triangle with vertices 4,5,6 in the updated mesh. The

expression that asserts if the configuration of the candidate triangle is preserved

can be stated as follows:preserve T j
{Va,Vb,Vc} , i f

(
∃M∗{Vd ,Ve,V f } ∈ M

∗) : Vd = Va∧Ve = Vb∧V f = Vc

do not preserve T j
{Va,Vb,Vc} ,otherwise

(13)

One of the reasons why the simple insertion of the vertices does not work is

that the existing mesh had some constrained edges. After the mesh is updated,

these constraints continue to exist (see squares on edges 1-2, 2-3, and 1-3 in Fig.

6 (b)). The configuration of the candidate triangle is not kept because no con-

straints over the edges of that triangle are set. Hence, the second alternative is

to execute an additional operation on top of the insertion of vertices Va, Vb and
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(a) (b)

(c) (d)

Figure 6: The insertion operation: (a) candidate triangle and initial mesh; (b) insertion of candidate

triangle’s vertices; (c) insertion of the candidate triangle’s vertices and constraints; (d) preparation

of the mesh followed by the insertion of the candidate triangle’s vertices and constraints.

Vc. Let add_constraint(e,M) be a function that adds a constraint on edge e. The

operation can be expressed as follows:

M∗ = add_constraint
(
e,M

)
, ∀e ∈ {Va-Vb,Vb-Vc,Va-Vc}. (14)

where Va-Vb denotes the edge defined between vertices Va and Vb.

Figure 6 (c) shows the updated mesh after this procedure is executed. Also in
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this case the configuration of the candidate triangle is not preserved. The reason is

that there are conflicting constraints inserted in the mesh. For example, initially,

the global mesh had a constraint over edge 1-2 (see indices in Fig. 6). At the same

time the constraint Va-Vb is inserted into the mesh. Since these two constraints in-

tersect, a new vertex is created at the intersection point (vertex 7). Since a vertex is

created at the intersection of the two initial constrained edges, four new edges are

created (edges 4-7, 7-8, 1-7 and 7-10). All of these edges are constrained. From

Fig. 6 (c), one can see that the overall result of this approach is that neither the can-

didate triangle nor the existing mesh is preserved. The reason is that contradictory

(intersecting) constraints are inserted in the mesh. The solution is to remove the

constraints from edges in the global mesh that intersect edges from the candidate

triangle, prior to inserting the vertices and constraints of the candidate triangle.

Let E = {e0,e1, · · · ,eN ,} be the list of the global mesh constrained edges that

intersect any of the candidate triangle’s edges, and remove_constraint(e,M) a

function that removes the constraint from edge e in the mesh M. The prepared

mesh M′ is obtained as follows:

M′ = remove_constraint
(
e,M

)
, ∀e ∈ E, (15)

and after this, the operations described in eqs. (12) and (14) are executed. Fig.

6 (d) shows the results of this approach. The mesh preparation stage detected

the following intersections (indices in Figs. 6 (a) and (d)): Va-Vb intersects with

V1-V2, Va-Vb intersects with V1-V3, Vb-Vc intersects with V1-V2 and Vb-Vc in-

tersects with V1-V3. As a result, the constraints of edges V1-V2 and V2-V3 are

removed. Note that in Fig. 6 (d), the prepared mesh (not the initial global mesh)

is shown in blue, and those constraints no longer appear. More important, the

candidate triangle’s configuration is preserved (triangle 4-5-6). In this particular
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case, the initial configuration of the mesh is lost, since there was overlap between

the candidate triangle and the initial mesh triangle.

We now show an example of continuous update of the global mesh: three

new projections (C j=1, C j=2, C j=3) are available to update to the initial mesh

M. The projections are mapped sequentially, generating updated meshes M∗, M∗∗,

etc. Each projection contains a single triangle to map to the global mesh. Trian-

gles T1
{Va,Vb,Vc}, T

2
{Vd ,Ve,V f } and T3

{Vg,Vh,Vi}, correspond to projections C j=1, C j=2,

C j=3, respectively. The quality of the triangles is such that the following holds:

q
(
Mn
)
< q
(
T1
{Va,Vb,Vc}

)
< q
(
T2
{Vd ,Ve,V f }

)
< q
(
T3
{Vg,Vh,Vi}

)
∀Mn ∈ M, (16)

and the mesh update cost parameter is α = 1, which means that there is no cost

associated to the updating of the mesh (see eq. (10)). In other words, the insertion

of all three candidate triangles is considered beneficial. The initial mesh is shown

in Fig. 7 (a), along with the three candidate triangles. Figure 7 (b) shows the

mesh after the insertion of the first candidate triangle, i.e., M∗. Since there is no

overlap, the candidate triangle is added to the mesh M∗{4,5,8}, and edges M∗{4-5},

M∗{5-8}, and M∗{4-8} are constrained. Also, since there was no overlap detected, the

initial configuration of the mesh is preserved. The result of the second insertion

is shown in Fig. 7 (c). In this case, there is overlap between candidate triangle

T2
{Vd ,Ve,V f } (seen in Fig. 7 (a)) and triangle M∗{2,5,7} (seen in Fig. 7 (b)). An

intersection between edges Vd-Ve and edge M∗{5-7} (seen in Fig. 7 (b)), is detected.

As a result, the constraint from edge M∗{5-7} is removed. The insertion results in

a new triangle M∗∗{9,10,11}. Note also that the overlapping triangle M∗{2,5,7} was not

preserved, i.e., it does not exist in the new mesh M∗∗. Finally, the third insertion

detects that triangle T3
{Vg,Vh,Vi} overlaps triangles M∗∗{3,4,5}, M

∗∗
{4,5,8} and M∗∗{2,3,5}.

Edges M∗∗{3-4}, M
∗∗
{4-5} and M∗∗{3-5} intersect the edges of T3

{Vg,Vh,Vi} which is why their
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(a) (b)

(c) (d)
Figure 7: The insertion operation, example 1: (a) candidate triangles and initial mesh M; (b) first

insertion, mesh M∗; (c) second insertion, mesh M∗∗; (d) third insertion, mesh M∗∗∗.

constraints are removed (actually, in this case they disappear after the candidate

triangle is inserted).

The insertion of candidate triangles sometimes creates not only the candidate

triangle itself, but also some additional triangles on the mesh. It is the case, for ex-

ample, of triangle M∗∗{7,9,10}. We refer to this type of triangles as orphan triangles,

meaning they have no parent projection. These are shown in grey color in Figure

8. Unlike triangles with parent projections, these triangles do not belong to any
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(a) (b)

(c) (d)
Figure 8: The projection parent status of each triangle (same example as in Fig. 7): (a) candidate

triangles and initial mesh M; (b) first insertion, mesh M∗; (c) second insertion, mesh M∗∗; (d) third

insertion, mesh M∗∗∗.

projection and thus they do not derive from the DDT triangulation executed over

an image of some projection. Because of this, there is no guarantee that these or-

phan triangles are compliant with edges in the projection images. For this reason,

we propose that orphan triangles are set to have the quality 0. In summary, this

approach for the update of a global primitive mesh consists of a set of procedures
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that are capable of updating the mesh whenever new, better quality triangles are

available for insertion, but at the same time the mechanism is capable of filling

the gaps left empty using orphan triangles.

4. Results

This section shows results both from one-shot texture mapping using DDTs,

as well as results from the algorithm proposed to conduct incremental texture

mapping.

4.1. One-shot Texture Mapping

Figure 9 (a) shows the detection of line segments in an image. Figure 9 (b)

displays the result of a Delaunay triangulation with arbitrary configuration, e.g.

computed by giving only the vertices as input (green dots in Fig. 9 (a)). Because

the triangulated mesh has an arbitrary configuration, triangle often contain areas

with multiple textures. This would cause problems when using affine texture map-

ping. Notice the large triangle that covers part of the roof of the building, as well

as a portion of the sky. This triangle contains a significant change in color and thus

(a) (b) (c)
Figure 9: One-shot texture mapping: (a) image with line segments detected (red lines); (b) arbi-

trary Delaunay triangulation; (c) proposed approach, using a constrained Delaunay triangulation.

Constrained edges marked in red.
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its affine texture mapping would result inaccurate. Figure 9 (c) shows the result of

the proposed DDT approach, where a constrained Delaunay triangulation is used.

This triangulation is computed using as input the vertices as in the previous case

but also the detected line segments (red lines in Fig. 9 (a), constrained edges also

shown in (c) with red lines). In this case, the large triangle described above does

not exist. In fact, there are no triangles which contain both sky and roof. Thus, we

can argue that the proposed approach creates a mesh in which triangles contain

smooth color transitions. The next section addresses the incremental update of

these triangulation meshes.

4.2. Incremental Texture Mapping

To show the results of incremental texture mapping, we recover the example

of section 1 (see Fig. 1): the vehicle approaches a wall panel, which has the word

START written on it and collects four images in sequence (color coded black-red-

orange-yellow in Fig. 10). The global mesh is created with the first image and

then updated three times. The global triangulated mesh at each iteration is shown

in Figs. 10 (top). Textures for each of these cases are show in Figs. 10 (bottom).

Projection C{k=4,l=1,t=t1} is used to create the global mesh. Thus, the global mesh

is composed only of triangles with parent projection C{k=4,l= f ront center,t=t1} (black

triangles in Fig. 10 (a)). Then, a new projection C{k=4,l=1,t=t2} becomes available.

The global mesh is updated (Fig. 10 (b)), and now contains a majority of triangles

from C{k=4,l=1,t=t2} (red triangles). Then projection C{k=4,l=1,t=t3} is mapped.

Since only a right side portion of the primitive is seen, orange triangles can be

observed on the right side of Fig. 10 (c)), while the left side retains red colored

triangles from previous projections. Orphan triangles (in blue) are generated to

fill the gaps that appear between the triangles with parent projections. Finally,
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(a)

(b)

(c)

(d)

Figure 10: The evolution of the global primitive mesh (top) as well as the texture (bottom): (a)

time t = t1; (b) time t = t2; (c) time t = t3, insertion of front center camera; (d) time t = t3, insertion

of front left camera.

projection C{k=4,l=3,t=t4} is used. This image views only the left portion of the

wall panel. As such, we can see yellow triangles on the left side of Fig. 10

(d)). This example shows how the proposed mechanism is capable of creating and

maintaining a global triangulated mesh which is used for enhancing the texture
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mapped onto the GPPs whenever new (and better) images are collected.

4.3. Projection of a Single Camera onto the Ground Plane

This section shows three examples of how the global primitive mesh evolves

when using a single camera to map a single primitive. We consider a similar

scene to the one presented in Fig. 1. Throughout the three time instants t = t1,

t = t2 and t = t3, the vehicle is moving forward. From t1 to t2 the vehicle drives

straight, and from t2 to t3 the vehicle turns slightly to the right. In this case the

primitive that represents the ground plane is used for texture mapping (k = 0).

As a consequence, there is always a portion of the images from the projections

that view the ground. In other words, at all instants any of the cameras view

a portion of the ground, since they are pointed downwards. We will consider

three different cases, each generating a unique scene representation: In the first

case only the front center camera (l = 1) is used for projection. Hence there

will be three projections: C{k=0,l=1,t=t1}, C{k=0,l=1,t=t2} and C{k=0,l=1,t=t3}; In

the second case only the rear center camera (l = 4) is used for projection. Hence

there will be three projections: C{k=0,l=4,t=t1}, C{k=0,l=4,t=t2} and C{k=0,l=4,t=t3};

In the third case only the front left camera (l = 3) is used for projection. Hence

there will be three projections: C{k=0,l=3,t=t1}, C{k=0,l=3,t=t2} and C{k=0,l=3,t=t3}.

The final global primitive meshes (those obtained after inserting projections at

times t1,t2 and t3) for each case are displayed in Fig. 11 (left column). Figure 11

(right column) shows the percentage of triangles of the global mesh that belong to

each projection, as a function of the mission time. Note that the final position of

the vehicle (which is the same for all cases) is depicted in the images, and bear in

mind that, during this sequence, the vehicle moves forward from the right to the

left. The triangles of the global primitive mesh are shown in colors, where each
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color corresponds to a particular projection.

Fig. 11 (first row, left) shows the distribution of triangles according to the

parent projection. In this case, the images are provided by the front center camera.

As the vehicle moves forward, the ground in front of the vehicle that has been

previously mapped by previous projections is now visible in images at a closer

range. This leads to the effect that more recent projections tend to override older

projections, i.e., red color (t2) overrides black color (t1), and yellow color (t3)

overides the other two. Figure 11 (first row, right) shows that at time t1, only

triangles from the first projection (black) and orphan triangles (blue) exist. Then,

at time t2, the triangles from the second projection (red) are added to the global

mesh. As a consequence, the percentage of triangles from the first projection

(black) decreases. At time t3, the third projection again takes the major slice of

percentage with respect to the previous two projections. In front facing cameras,

when the vehicle is moving forward, more recent projections tend to contribute

with a larger portion of the total triangles in the global mesh.

The second case is shown in 11 (second row, left). Here, since the camera is

facing the rear side of the vehicle, the opposite phenomena occurs: the vehicle is

moving away from the ground behind it, and thus older projections were taken at

closer distances to the ground. As a consequence, the red color (projection at t2)

overrides the yellow color (projection at t3), and the black color (projection at t1,

the oldest one) overrides all others. This is observable in Fig. 11 (second row,

right), where the first projection (black) is, at all times, the one with the largest

percentage of the triangles.

Figure 11 (third row, left) shows the third case. Here, since the camera is facing

the left side of the vehicle, a hybrid phenomena takes place. For each projection,
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Figure 11: Mapping of a single camera to the ground plane: (first row) front center camera; (second

row) rear center camera; (third row) front left camera; (left column) global primitive meshes; (right

column) contribution of each projection to the total number of triangles in the globel mesh. Colors

denote each of the projections, i.e., black is time t1, red is time t2 and yellow is time t3. Blue

triangles are orphan triangles.
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there is always a portion of the triangles, i.e., those that map the ground directly in

front of the camera for that particular instant, that have a higher projection quality

when compared to others. Figure 11 (third row, right) also shows this tendency:

the percentage of projections tends to be the same for all projections, which is why

the second projection (red) when first mapped at time t2 achieves approximately

the same percentage of triangles as the first projection (black). They continue to

have similar percentages also at time t3. At time t3, the third projection (yellow)

obtained a higher value of percentage because the vehicle as turned slightly to

the right and the left camera faced an area of the ground that was not previously

mapped by any of the previous projections.

4.4. Projection of Multiple Cameras onto the Ground Plane

The examples given in section 4.3 have shown that the proposed algorithm

is capable of handling multiple projections, correctly determining which are the

best quality projections to map onto the global mesh. Nonetheless, those examples

were simplified since only one camera was considered to provide projections in

each case. In this section, the five cameras onboard the Talos are used to provide

projection to be mapped onto the ground plane. The same sequence is used: the

vehicle is moving forward and three time instants are used to generate projections.

Each time instant t1, t2 and t3 generates five projections, one for each camera.

Figure 12 (a) shows the state of the global mesh after time t1. Five projections

are contained in the mesh. At time t2, the global mesh incorporates many of the

projections that are computed at this time (Fig. 12 (b)). The same occurs at time

t3 (Fig. 12 (c)). Note that these images are not exactly the same as those in Figure

11, because in that case only the final global projection mesh was shown for three

different examples. Here, we show the state of a single global projection mesh at
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(a) (b)

(c) (d)

Figure 12: Distribution of triangles according to projection, for an example with five cameras.

Three time instants (15 projections in total) are considered; (a) t1; (b) t2; (c) t3; (d) percentage

of triangles by parent projection. Projections are colored with a black to yellow color coding,

denoting oldest to newest projections. Blue color denotes orphan triangles.

times t1, t2 and t3. Thus, in this case it is possible to see how the mesh evolved

as more projections became available. The resulting mesh is an intricate mosaic

of triangles coming from several projections. At time t1, the area of projection

from the rear center camera was not connected to the areas of projection of the

other cameras. Note that the red triangles in Fig. 12 (a) are not connected to

any triangle with a parent projection, only to orphan triangles. This unmapped

region corresponds to the ground that was bellow the vehicle at time t1. Obviously,
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there is no coverage from the cameras for that area, so the system handles this by

defining orphan triangles (blue) to cover that area. At time t2, the vehicle has

moved forward, and the uncovered ground is now visible from the rear camera.

Hence, the areas mapped by the rear cameras connect to the areas mapped by the

other cameras, as seen in Fig. 12 (b). At time t3, since the vehicle has turned to

the right, the rear camera now views a different portion of the ground that had not

been captured by any other camera. Note, in Fig. 12 (c), how the triangles of the

rear camera (the brightest yellow at the bottom right side) map a region that was

not seen before and was previously covered only by orphan (blue) triangles.

Figure 12(d) shows the percentage of triangles of each projection as a function

of the mission time. As each time instant, only newly acquired projections are

used to update the mesh. Hence, triangles from previous iterations, if removed,

will not be retested for insertion. That means each triangles is tested for insertion

a single time. If a triangle is removed, it will never again be reinserted. This can

be observed in the Figure, since none of the projections increases the percentage

of triangles it contains. Figure 13 shows the fifteen images used to compute these

representations.

As the vehicle moves and turns around, more and more of the ground that had

not been viewed before is covered by new projections. This is a clear example

of why integrating several projections over time is advantageous. A composite

photometric description of the environment can be obtained that was impossible

to compute without the capability of integrating multiple projections over time in

an incremental fashion.

The incremental texture mapping of an entire scenario can be observed in

https://youtu.be/UG8WMCDxx8A. The scenario is composed of the en-
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Figure 13: Images and local triangulated meshes for all projections shown in Fig. 12: First row

front center teleobjective camera; Second row front center camera; Third row, front right camera;

Fourth row, front left camera; Fifth row, rear center camera; Left column: time t1, (Fig. 11 (a));

Middle column: time t2, (Fig. 11 (b)); Right column: time t3, (Fig. 11 (c));
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tire MIT sequence. All five cameras onboard the Talos vehicle are used as input

to the texture mapping. Geometric primitives are represented in the environment

by the blue-green polygons. A blue to green colormap is used to color the primi-

tives according to their index, the more recently detected the primitive, the closer

to green it is. Photometry is represented by the texture mapped onto the primi-

tives. Note that at each of the time instants new projections will update the global

meshes of the detected polygonal primitives. Hence the scenario representation

will evolve photometrically over time. Furthermore, also the geometric represen-

tation will evolve over time (see [2] for details). For a better visualization, the

primitive that represents the ground plane is not textured in the video.

5. Conclusions

This paper addressed the problem of how to create and update a triangulated

mesh. These meshes are used for texture mapping surfaces in 3D, and the input are

images collected from cameras mounted on-board a vehicle. The geometric struc-

ture onto which texture is mapped is described in detail in [2] and given as a list of

polygons. Because the atomic entities of the 3D structure are defined as polygons

(rather than triangles), it is possible to perform a triangulation of the convex hull

of that polygon, as opposed to having an arbitrary triangulation. This triangulation

is computed in the image space, and is defined as a constrained Delaunay triangu-

lation. This makes it possible to impose line segments as constrained edges in the

triangulation, which creates triangles with smooth color transitions. This, in turn,

makes it possible to use affine texture mapping.

Incremental texture mapping is done by creating and updating a global tri-

angulated mesh per geometric primitive. The update of this mesh is done using
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meshes created from projections. In this paper, we have proposed a sequence of

operations which are used for inserting triangles from the projection mesh into

the global triangulation mesh. This procedure ensures that the inserted triangles

maintain their configuration as well as the existing triangles which do not overlap

the inserted triangles. Furthermore, the proposed algorithm fills the gaps in the

mesh where there are to triangles with parent projections with orphan triangles.

Using this mechanism, the holes that could exist between textures of different pro-

jections are replaced by orphan triangles where texture is interpolated, resulting

in a better overall quality of the texture.

To the best of our knowledge, this is the first approach in this field capable of

fusing images continuously and in an incremental fashion in order to generate a

single texture of good quality.
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