|
M. Diaz, Dennys Paillacho, C. Angulo, O. Torres, J. Gonzálalez, & J. Albo Canals. (2014). A Week-long Study on Robot-Visitors Spatial Relationships during Guidance in a Sciences Museum. In ACM/IEEE International Conference on Human-Robot Interaction (pp. 152–153).
Abstract: In order to observe spatial relationships in social human- robot interactions, a field trial was carried out within the CosmoCaixa Science Museum in Barcelona. The follow me episodes studied showed that the space configurations formed by guide and visitors walking together did not always fit the robot social affordances and navigation requirements to perform the guidance successfully, thus additional commu- nication prompts are considered to regulate effectively the walking together and follow me behaviors.
|
|
|
Dennys Paillacho Chiluiza & Steven Silva Mendoza. (2024). Exploring the Perceptions and Challenges of Social Robot Navigation: Two Case Studies in Different Socio-Technical Contexts. In Accepted in 36th Australian Conference on Human-Computer Interaction.
|
|
|
Jorge Alvarez, Mireya Zapata, & Dennys Paillacho. (2019). Mechanical Design of a spatial mechanism for the robot head movements in social robotics for the evaluation of Human-Robot Interaction. In 2nd International Conference on Human Systems Engineering and Design: Future Trends and Applications (IHSED 2019); Munich, Alemania (Vol. 1026, pp. 160–165).
|
|
|
Jorge Alvarez Tello, Mireya Zapata, & Dennys Paillacho. (2019). Kinematic optimization of a robot head movements for the evaluation of human-robot interaction in social robotics. In 10th International Conference on Applied Human Factors and Ergonomics and the Affiliated Conferences (AHFE 2019), Washington D.C.; United States. Advances in Intelligent Systems and Computing (Vol. 975, pp. 108–118).
Abstract: This paper presents the simplification of the head movements from
the analysis of the biomechanical parameters of the head and neck at the
mechanical and structural level through CAD modeling and construction with
additive printing in ABS/PLA to implement non-verbal communication strategies and establish behavior patterns in the social interaction. This is using in the
denominated MASHI (Multipurpose Assistant robot for Social Human-robot
Interaction) experimental robotic telepresence platform, implemented by a
display with a fish-eye camera along with the mechanical mechanism, which
permits 4 degrees of freedom (DoF). In the development of mathematicalmechanical modeling for the kinematics codification that governs the robot and
the autonomy of movement, we have the Pitch, Roll, and Yaw movements, and
the combination of all of them to establish an active communication through
telepresence. For the computational implementation, it will be show the rotational matrix to describe the movement.
|
|