|
Milton Mendieta, F. Panchana, B. Andrade, B. Bayot, C. Vaca, Boris X. Vintimilla, et al. (2018). Organ identification on shrimp histological images: A comparative study considering CNN and feature engineering. In IEEE Ecuador Technical Chapters Meeting ETCM 2018. Cuenca, Ecuador (pp. 1–6).
Abstract: The identification of shrimp organs in biology using
histological images is a complex task. Shrimp histological images
poses a big challenge due to their texture and similarity among
classes. Image classification by using feature engineering and
convolutional neural networks (CNN) are suitable methods to
assist biologists when performing organ detection. This work
evaluates the Bag-of-Visual-Words (BOVW) and Pyramid-Bagof-
Words (PBOW) models for image classification leveraging big
data techniques; and transfer learning for the same classification
task by using a pre-trained CNN. A comparative analysis
of these two different techniques is performed, highlighting
the characteristics of both approaches on the shrimp organs
identification problem.
|
|
|
Patricia L. Suarez, Angel D. Sappa, Boris X. Vintimilla, & Riad I. Hammoud. (2018). Deep Learning based Single Image Dehazing. In 14th IEEE Workshop on Perception Beyond the Visible Spectrum – In conjunction with CVPR 2018. Salt Lake City, Utah. USA.
Abstract: This paper proposes a novel approach to remove haze
degradations in RGB images using a stacked conditional
Generative Adversarial Network (GAN). It employs a triplet
of GAN to remove the haze on each color channel independently.
A multiple loss functions scheme, applied over a
conditional probabilistic model, is proposed. The proposed
GAN architecture learns to remove the haze, using as conditioned
entrance, the images with haze from which the clear
images will be obtained. Such formulation ensures a fast
model training convergence and a homogeneous model generalization.
Experiments showed that the proposed method
generates high-quality clear images.
|
|
|
Patricia L. Suarez, Angel D. Sappa, & Boris X. Vintimilla. (2018). Vegetation Index Estimation from Monospectral Images. In 15th International Conference, Image Analysis and Recognition (ICIAR 2018), Póvoa de Varzim, Portugal. Lecture Notes in Computer Science (Vol. 10882, pp. 353–362).
Abstract: This paper proposes a novel approach to estimate Normalized
Difference Vegetation Index (NDVI) from just the red channel of
a RGB image. The NDVI index is defined as the ratio of the difference
of the red and infrared radiances over their sum. In other words, information
from the red channel of a RGB image and the corresponding
infrared spectral band are required for its computation. In the current
work the NDVI index is estimated just from the red channel by training a
Conditional Generative Adversarial Network (CGAN). The architecture
proposed for the generative network consists of a single level structure,
which combines at the final layer results from convolutional operations
together with the given red channel with Gaussian noise to enhance
details, resulting in a sharp NDVI image. Then, the discriminative model
estimates the probability that the NDVI generated index came from the
training dataset, rather than the index automatically generated. Experimental
results with a large set of real images are provided showing that
a Conditional GAN single level model represents an acceptable approach
to estimate NDVI index.
|
|
|
Patricia L. Suarez, Angel D. Sappa, Boris X. Vintimilla, & Riad I. Hammoud. (2018). Near InfraRed Imagery Colorization. In 25 th IEEE International Conference on Image Processing, ICIP 2018 (pp. 2237–2241).
Abstract: This paper proposes a stacked conditional Generative
Adversarial Network-based method for Near InfraRed
(NIR) imagery colorization. We propose a variant architecture
of Generative Adversarial Network (GAN) that uses multiple
loss functions over a conditional probabilistic generative model.
We show that this new architecture/loss-function yields better
generalization and representation of the generated colored IR
images. The proposed approach is evaluated on a large test
dataset and compared to recent state of the art methods using
standard metrics.1
Index Terms—Convolutional Neural Networks (CNN), Generative
Adversarial Network (GAN), Infrared Imagery colorization.
|
|
|
Patricia L. Suarez, Angel D. Sappa, & Boris X. Vintimilla. (2018). Adaptive Harris Corners Detector Evaluated with Cross-Spectral Images. In International Conference on Information Technology & Systems (ICITS 2018). ICITS 2018. Advances in Intelligent Systems and Computing (Vol. 721).
Abstract: This paper proposes a novel approach to use cross-spectral
images to achieve a better performance with the proposed Adaptive Harris
corner detector comparing its obtained results with those achieved
with images of the visible spectra. The images of urban, field, old-building
and country category were used for the experiments, given the variety of
the textures present in these images, with which the complexity of the
proposal is much more challenging for its verification. It is a new scope,
which means improving the detection of characteristic points using crossspectral
images (NIR, G, B) and applying pruning techniques, the combination
of channels for this fusion is the one that generates the largest
variance based on the intensity of the merged pixels, therefore, it is that
which maximizes the entropy in the resulting Cross-spectral images.
Harris is one of the most widely used corner detection algorithm, so
any improvement in its efficiency is an important contribution in the
field of computer vision. The experiments conclude that the inclusion of
a (NIR) channel in the image as a result of the combination of the spectra,
greatly improves the corner detection due to better entropy of the
resulting image after the fusion, Therefore the fusion process applied to
the images improves the results obtained in subsequent processes such as
identification of objects or patterns, classification and/or segmentation.
|
|
|
Wilton Agila, Gomer Rubio, L. Miranda, & L. Vázquez. (2018). Qualitative Model of Control in the Pressure Stabilization of PEM Fuel Cell. In 7th International Conference on Renewable Energy Research and Applications, ICRERA 2018. Paris, Francia. (pp. 1221–1226).
Abstract: This work describes an approximate reasoning
technique to deal with the non-linearity that occurs in the
stabilization of the pressure of anodic and cathodic gases of a
proton exchange membrane fuel cell (PEM). The implementation
of a supervisory element in the stabilization of the pressure of the
PEM cell is described. The fuzzy supervisor is a reference
control, it varies the value of the reference given to the classic
low-level controller, Proportional – Integral – Derivative (PID),
according to the speed of change of the measured pressure and
the change in the error of the pressure. The objective of the fuzzy
supervisor is to achieve a rapid response over time of the variable
pressure, avoiding unwanted overruns with respect to the
reference value. A comparative analysis is detailed with the
classic PID control to evaluate the operation of the "fuzzy
supervisor", with different flow values and different sizes of
active area of the PEM cell (electric power generated).
|
|
|
Gomer Rubio, & Wilton Agila. (2018). Dynamic Modeling of Fuel Cells in a Strategic Context. In 7th International Conference on Renewable Energy Research and Applications, ICRERA 2018. Paris, Francia..
|
|
|
Carlos Monsalve, & Alain April and Alain Abran. (2011). Measuring software functional size from business process models. International Journal of Software Engineering and Knowledge Engineering, Vol. 21, pp. 311–338.
Abstract: ISO 14143-1 specifies that a functional size measurement (FSM) method must provide measurement procedures to quantify the functional user requirements (FURs) of software. Such quantitative information, functional size, is typically used, for instance, in software estimation. One of the international standards for FSM is the COSMIC FSM method — ISO 19761 — which was designed to be applied both to the business application (BA) software domain and to the real-time software domain. A recurrent problem in FSM is the availability and quality of the inputs required for measurement purposes; that is, well documented FURs. Business process (BP) models, as they are commonly used to gather requirements from the early stages of a project, could be a valuable source of information for FSM. In a previous article, the feasibility of such an approach for the BA domain was analyzed using the Qualigram BP modeling notation. This paper complements that work by: (1) analyzing the use of BPMN for FSM in the BA domain; (2) presenting notation-independent guidelines for the BA domain; and (3) analyzing the possibility of using BP models to perform FSM in the real-time domain. The measurement results obtained from BP models are compared with those of previous FSM case studies.
|
|
|
Juan C. Basurto, P. C. and H. C. (2011). A Proximity-Aware Transparent Handoff Mobility Scheme for VoIP Communication over Infrastructure Mesh Networks. In International Congress of Electronic, Electrical and Systems Engineering-INTERCON 2011.
Abstract: Mobility Management plays a key role in Voice-over- IP (VoIP) communications over Wireless Mesh Networks (WMN) as clients should maintain adequate levels of Quality of Service (QoS) as they move across the network. This paper presents PATH, a Proximity-Aware Transparent Handoff mobility scheme for real time voice communications over wireless mesh networks. Our study focuses on Medium Access Control (MAC) layer procedures and relies on gratuitous ARP unicasting in order to provide fast-handoffs. An experimental evaluation has been conducted and its results are shown in this paper.
|
|
|
Cristina L. Abad, Yi Lu, & Roy H. Campbell. (2011). DARE: Adaptive Data Replication for Efficient Cluster Scheduling. In IEEE International Conference on Cluster Computing, 2011 (pp. 159–168).
Abstract: Placing data as close as possible to computation is a common practice of data intensive systems, commonly referred to as the data locality problem. By analyzing existing production systems, we confirm the benefit of data locality and find that data have different popularity and varying correlation of accesses. We propose DARE, a distributed adaptive data replication algorithm that aids the scheduler to achieve better data locality. DARE solves two problems, how many replicas to allocate for each file and where to place them, using probabilistic sampling and a competitive aging algorithm independently at each node. It takes advantage of existing remote data accesses in the system and incurs no extra network usage. Using two mixed workload traces from Facebook, we show that DARE improves data locality by more than 7 times with the FIFO scheduler in Hadoop and achieves more than 85% data locality for the FAIR scheduler with delay scheduling. Turnaround time and job slowdown are reduced by 19% and 25%, respectively.
|
|