|
Records |
Links |
|
Author |
Patricia L. Suarez; Angel D. Sappa; Boris X. Vintimilla |
|
|
Title |
Infrared Image Colorization based on a Triplet DCGAN Architecture. |
Type |
Conference Article |
|
Year |
2017 |
Publication |
13th IEEE Workshop on Perception Beyond the Visible Spectrum – In conjunction with CVPR 2017. (This paper has been selected as “Best Paper Award” ) |
Abbreviated Journal |
|
|
|
Volume |
2017-July |
Issue |
|
Pages |
212-217 |
|
|
Keywords |
|
|
|
Abstract |
|
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
cidis @ cidis @ |
Serial |
62 |
|
Permanent link to this record |
|
|
|
|
Author |
Patricia L. Suarez; Angel D. Sappa; Boris X. Vintimilla |
|
|
Title |
Image patch similarity through a meta-learning metric based approach |
Type |
Conference Article |
|
Year |
2019 |
Publication |
15th International Conference on Signal Image Technology & Internet based Systems (SITIS 2019); Sorrento, Italia |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
511-517 |
|
|
Keywords |
|
|
|
Abstract |
Comparing images regions are one of the core methods used on computer vision for tasks like image classification, scene understanding, object detection and recognition. Hence, this paper proposes a novel approach to determine similarity of image regions (patches), in order to obtain the best representation of image patches. This problem has been studied by many researchers presenting different approaches, however, the ability to find the better criteria to measure the similarity on image regions are still a challenge. The present work tackles this problem using a few-shot metric based meta-learning framework able to compare image regions and determining a similarity measure to decide if there is similarity between the compared patches. Our model is training end-to-end from scratch. Experimental results
have shown that the proposed approach effectively estimates the similarity of the patches and, comparing it with the state of the art approaches, shows better results. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
gtsi @ user @ |
Serial |
115 |
|
Permanent link to this record |
|
|
|
|
Author |
Patricia L. Suarez; Angel D. Sappa; Boris X. Vintimilla; Riad I. Hammoud |
|
|
Title |
Deep Learning based Single Image Dehazing |
Type |
Conference Article |
|
Year |
2018 |
Publication |
14th IEEE Workshop on Perception Beyond the Visible Spectrum – In conjunction with CVPR 2018. Salt Lake City, Utah. USA |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
This paper proposes a novel approach to remove haze
degradations in RGB images using a stacked conditional
Generative Adversarial Network (GAN). It employs a triplet
of GAN to remove the haze on each color channel independently.
A multiple loss functions scheme, applied over a
conditional probabilistic model, is proposed. The proposed
GAN architecture learns to remove the haze, using as conditioned
entrance, the images with haze from which the clear
images will be obtained. Such formulation ensures a fast
model training convergence and a homogeneous model generalization.
Experiments showed that the proposed method
generates high-quality clear images. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
gtsi @ user @ |
Serial |
83 |
|
Permanent link to this record |
|
|
|
|
Author |
Patricia L. Suarez; Angel D. Sappa; Boris X. Vintimilla; Riad I. Hammoud |
|
|
Title |
Near InfraRed Imagery Colorization |
Type |
Conference Article |
|
Year |
2018 |
Publication |
25 th IEEE International Conference on Image Processing, ICIP 2018 |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
2237-2241 |
|
|
Keywords |
|
|
|
Abstract |
This paper proposes a stacked conditional Generative
Adversarial Network-based method for Near InfraRed
(NIR) imagery colorization. We propose a variant architecture
of Generative Adversarial Network (GAN) that uses multiple
loss functions over a conditional probabilistic generative model.
We show that this new architecture/loss-function yields better
generalization and representation of the generated colored IR
images. The proposed approach is evaluated on a large test
dataset and compared to recent state of the art methods using
standard metrics.1
Index Terms—Convolutional Neural Networks (CNN), Generative
Adversarial Network (GAN), Infrared Imagery colorization. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
gtsi @ user @ |
Serial |
81 |
|
Permanent link to this record |
|
|
|
|
Author |
Patricia L. Suarez; Angel D. Sappa; Boris X. Vintimilla; Riad I. Hammoud |
|
|
Title |
Image Vegetation Index through a Cycle Generative Adversarial Network |
Type |
Conference Article |
|
Year |
2019 |
Publication |
Conference on Computer Vision and Pattern Recognition Workshops (CVPR 2019); Long Beach, California, United States |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
1014-1021 |
|
|
Keywords |
|
|
|
Abstract |
This paper proposes a novel approach to estimate the
Normalized Difference Vegetation Index (NDVI) just from
an RGB image. The NDVI values are obtained by using
images from the visible spectral band together with a synthetic near infrared image obtained by a cycled GAN. The
cycled GAN network is able to obtain a NIR image from
a given gray scale image. It is trained by using unpaired
set of gray scale and NIR images by using a U-net architecture and a multiple loss function (gray scale images are
obtained from the provided RGB images). Then, the NIR
image estimated with the proposed cycle generative adversarial network is used to compute the NDVI index. Experimental results are provided showing the validity of the proposed approach. Additionally, comparisons with previous
approaches are also provided. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
gtsi @ user @ |
Serial |
106 |
|
Permanent link to this record |
|
|
|
|
Author |
Patricia Suarez & Angel D. Sappa |
|
|
Title |
Haze-Free Imaging through Haze-Aware Transformer Adaptations |
Type |
Conference Article |
|
Year |
2024 |
Publication |
In Fourth International Conference on Innovations in Computational Intelligence and Computer Vision (ICICV 2024) |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
|
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
cidis @ cidis @ |
Serial |
236 |
|
Permanent link to this record |
|
|
|
|
Author |
Patricia Suarez & Angel Sappa |
|
|
Title |
Toward a thermal image-like representation |
Type |
Conference Article |
|
Year |
2023 |
Publication |
Proceedings of the International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2023) Lisbon, 19-21 Febrero 2023 |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
133 - 140 |
|
|
Keywords |
|
|
|
Abstract |
|
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
cidis @ cidis @ |
Serial |
205 |
|
Permanent link to this record |
|
|
|
|
Author |
Patricia Suarez Riofrio & Angel D. Sappa |
|
|
Title |
Thermal Image Synthesis: Bridging the Gap between Visible and Infrared Spectrum |
Type |
Conference Article |
|
Year |
2024 |
Publication |
Accepted in 19th International Symposium on Visual Computing 2024 |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
|
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
cidis @ cidis @ |
Serial |
253 |
|
Permanent link to this record |
|
|
|
|
Author |
Patricia Suarez, Angel D. Sappa |
|
|
Title |
A Generative Model for Guided Thermal Image Super-Resolution |
Type |
Conference Article |
|
Year |
2024 |
Publication |
19th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, VISIGRAPP 2024 Rome 27 – 29 Febraury 2024 |
Abbreviated Journal |
|
|
|
Volume |
Vol. 3: VISAPP |
Issue |
|
Pages |
765-771 |
|
|
Keywords |
|
|
|
Abstract |
|
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
cidis @ cidis @ |
Serial |
240 |
|
Permanent link to this record |
|
|
|
|
Author |
Patricia Suarez, Angel Sappa |
|
|
Title |
Depth-Conditioned Thermal-like Image Generation |
Type |
Conference Article |
|
Year |
2024 |
Publication |
14th International Conference on Pattern Recognition Systems (ICPRS) Londres 15 – 18 July 2024 |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
|
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
979-835037565-7 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
cidis @ cidis @ |
Serial |
243 |
|
Permanent link to this record |