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Abstract—Guided image processing techniques are widely used
for extracting information from a guiding image to aid in the
processing of the guided one. These images may be sourced from
different modalities, such as 2D and 3D, or different spectral
bands, like visible and infrared. In the case of guided cross-
spectral super-resolution, features from the two modal images are
extracted and efficiently merged to migrate guidance information
from one image, usually high-resolution (HR), toward the guided
one, usually low-resolution (LR). Different approaches have been
recently proposed focusing on the development of architectures
for feature extraction and merging in the cross-spectral domains,
but none of them care about the different nature of the given
images. This paper focuses on the specific problem of guided
thermal image super-resolution, where an LR thermal image is
enhanced by an HR visible spectrum image. To improve existing
guided super-resolution techniques, a novel scheme is proposed
that maps the original guiding information to a thermal image-
like representation that is similar to the output. Experimental
results evaluating five different approaches demonstrate that the
best results are achieved when the guiding and guided images
share the same domain.

Index Terms—Thermal-Like Image, Guided Super-resolution,
HSV Image

I. INTRODUCTION

In recent years the usage of thermal imaging has largely
increased to tackle different applications (e.g., pedestrian
tracking [1], firefighting [2], and many others). Unfortunately,
the main limitation of this technology lies in the low resolution
of thermal cameras; accessing HR thermal images is relatively
difficult and expensive. Trying to overcome this limitation
different single-image super-resolution (SR) approaches have
been developed (e.g., [3], [4]). Hence, in order to encourage
the development of new techniques in this area, a thermal
image SR challenge has been organized since 2020 as a part
of the Perception Beyond the Visible Spectrum workshop at
the CVPR conference [5]–[7]. While promising results have
been achieved for ×2 and ×4 SR, it remains challenging to re-
cover the information when large-scale upsampling is required.
Hence, the development of more effective and efficient super-
resolution techniques remains an important research area in
thermal imaging.

In order to reach acceptable results with higher upsampling
resolutions, recent studies propose to use the information
from an HR cheap visible spectrum camera as guidance
(e.g., [8], [9], and [10]). These approaches extract guidance

information to drive the SR process of LR thermal images.
The need for guided image processing is justified by its
potential to improve image quality, facilitate super-resolution,
integrate data from multiple modalities, and enhance semantic
understanding. However, several research gaps and challenges
must be addressed to maximize its potential.

Guidance SR techniques have been studied in different
super-resolution domains, such as depth-map SR [11], infrared
SR [12], [13], thermal SR [14], hyperspectral SR [15], and
some others. MSG-Net [11], employs CNNs to accomplish
guidance super-resolution, which is the first CNN model
that attempts to upsample depth images under multi-scale
guidance from the corresponding HR visible images. In [13],
a new unsupervised approach is proposed to improve the
visual quality of infrared images using a generative adversarial
framework without high-resolution ground truth. The method
includes a dual discriminator module and a content constraint
module to enhance image details and maintain basic content.
The approach produces realistic super-resolved images and is
simpler to generalize for higher scales compared to supervised
algorithms. More recently, [16] presents a guided SR approach,
where a very LR face image is super-resolved up to ×8 by
means of a CNN architecture—referred to as GWAInet. The
approach leverages an HR face image of the same person
to guide the super-resolution process. GWAInet is trained
adversarially to produce high-quality perceptual results and
uses a warper subnetwork and a feature fusion chain to align
and extract features from the HR guiding image and the LR
input image.

Guidance information can also help to reduce artifacts
and noise in the output image, resulting in a more visually
appealing and natural-looking image [17]. It can also be
used to control certain aspects of the output image, such as
preserving certain image features or enhancing specific image
details. This can be especially important in applications where
the output image is intended for further analysis or to be used
in downstream tasks. Commonly, guidance information is a
critical component of super-resolution algorithms and plays a
significant role in determining the quality of the output image.

Most of the guided super-resolution approaches mentioned
above focus on developing novel architectures to efficiently
extract and integrate features from the HR guiding image to-
ward the LR-guided image during the super-resolution process.
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Fig. 1. Guided thermal image super-resolution approaches: (left) State-of-the-art scheme; (right) Proposed strategy.

On the contrary, the current work tackles the representation of
the input images trying to map guiding to the guided domain.
Our hypothesis is that as more similar the domain of the input
images is as better the guidance process will be. This hypothe-
sis is validated by testing different state-of-the-art approaches
using as a guide an HR thermal-like image, instead of the
given HR visible spectrum image. In all the tested approaches
better results are obtained with the proposed strategy. The
manuscript is organized as follows. Section II presents the
strategy used for obtaining the guided thermal image super-
resolution from a thermal-like representation. Experimental
results and comparisons with different implementations are
given in Section III. Finally, conclusions and future works are
presented in Section IV.

II. PROPOSED STRATEGY

The coexistence of information from different modalities
has inspired the research community to explore different strate-
gies to combine this information. These strategies go from
information fusion, where a new representation is obtained
by merging the given inputs (e.g., [18], [19]), to guided
approaches, where one of the images is used to guide the
processing of the other (e.g., filtering [10], super-resolution
[16]). In this paper, state-of-the-art guided super-resolution
techniques are evaluated by updating the guiding image, in
general, a high-resolution visible spectrum image, with a
synthetic representation of it. Figure 1 depicts an illustration
of the proposed strategy. This section first introduces the
modifications proposed to the approach presented in [20],
where a cyclic adversarial network with multiple loss functions
is used to obtain a pseudo-thermal representation. One of the
proposed changes is in the patch sampling process used for the
contrastive loss, where the input data are shuffled so that the
same patch IDs are not used for multiple images in the same
batch when comparing the image regions. Another change lies
at the optimizer level in order to increase the convergence of
the model during the training process. In Section II-B, all the
evaluated state-of-the-art guided super-resolution approaches
are briefly described.

A. Thermal Image-Like Representation

The generation of synthetic representations has been widely
explored in several machine vision applications, such as

synthetic face representations [21], image colorization (e.g.,
[22], [23]), vegetation index estimation (e.g., [24], [25]), just
to mention a few. Recently, in [20] a novel approach has
been proposed to generate thermal image-like representations
from low-cost visible images. The main idea is to generate
pseudothermal synthetic images that can provide valuable
information about the objects in the scene and can be used to
improve the performance of other machine vision algorithms.

The architecture presented in [20] is a generative cycle GAN
architecture that enables domain adaptation from the bright-
ness channel of an HSV image to a thermal-like image. The
model achieves convergence through the use of several loss
functions, including relativistic, contrastive, cycle consistency,
and identity losses. Herein, we provide a detailed explana-
tion of the underlying principles guiding the use of these
loss functions in the generation of synthetic thermal images.
First, the use of relativistic adversarial loss, has demonstrated
effectiveness in improving the stability and quality of GANs,
especially when generating high-dimensional data. This loss
function mandates that the generated samples resemble the
actual samples more closely, mitigating model saturation and
accelerating the training process. Given the benefits of this
loss, we have integrated it into a cycled transformation model
as proposed in [20], resulting in successful outcomes:

LRGAN
D = E(xr,xf )∼(P,Q) [f (C (xr)− C (xf ))] , (1)

LRGAN
G = E(xr,xf )∼(P,Q) [g (C (xf )− C (xr))] , (2)

where f and g are functions mapping a scalar input to another
scalar and xr, xf is the real and fake image respectively.
According to [26], contrastive loss has also been implemented
to minimize the distance between similar pairs of data points
and maximize the distance between dissimilar pairs of data
points in a given dataset. This contrastive loss can be defined
as:

Lcont(Ŷ , Y ) =

L∑
l=1

Sl∑
s=1

ℓcontr (v̂sl , v
s
l , v̄

s
l ) , (3)

where the shape of the tensor Vl ∈ RSl×Dl is dependant on
model architecture, and Sl is the number of spatial locations
of the tensor. Therefore, the tensor is indexed with the notation
vsl ∈ RDl , which is the Dl-dimensional feature vector at
spatial location sth and the notation v̂sl ∈ RDl , which is also
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Fig. 2. UGSR architecture (illustration from [8]).

the Dl-dimensional predicted feature tensor at spatial location
sth . It has been denoted v̄sl ∈ R(Sl−1)×Dl as the collection of
feature vectors at all other spatial locations. Identity loss has
been included, as proposed in [20]. It computes the difference
between the features extracted from the real and generated im-
ages. By minimizing the intensity loss, the generator network
can learn to produce outputs that not only look realistic but
also have similar features and structures as the real images;
this loss is defined as:

Lident (G,F ) = Ec∼Pdata (c) [∥F (c)− c∥]
+ En∼Pdata (n) [∥G(n)− n∥] ,

(4)

where G and F correspond to mapping functions that generate
the synthetic images F (G(x)) and G(Y (z)) respectively and
c and n correspond to a real image from the source and target
domains respectively.

Additionally, a cycle consistency loss is used in order to
enhance the translation results and also, helps to ensure that
the mapping between the domains is consistent and bijective.
This means that if an image is translated from domain A to
domain B and then back to domain A, it should be the same
as the original image from domain A. It is defined as:

Lcycle(G,F ) = Ex∼p data(x)[∥F (G(x))− x∥1] (5)

+Ey ∼p data(y)[∥G(F (y))− y∥1],

where G and F correspond to mapping functions that generate
the reconstructed images F (G(x)) and G(F (y)) respectively
and x,y correspond to real images. The cycle consistency loss
encourages F (G(x)) ≈ x real and G(F (y)) ≈ y real. This
loss allows for generating high-quality images that are both
realistic and semantically meaningful. Finally, the multiple
loss functions implemented in our model can be defined as:

Lfinal = λ1LRGAN(G,D,X, Y ) + λ2Lcont (G,H,X) (6)
+λ3Lcont(G,H, Y ) + λ4Lident(G,F ) + λ5Lcycle(G,F ),

where λi are empirically defined.

B. Guided Super-Resolution Approaches

This section briefly details the guided SR approaches eval-
uated in the current work. Note that some of the approaches
have been originally proposed for guiding SR of depth maps,
while others are for thermal images. In order to evaluate all
of them in a common framework just thermal images are
considered as input for training them, in spite of the fact
they were proposed for thermal or depth map images. All the
approaches from the state-of-the-art included in this section
have the corresponding code provided by the authors. All these
approaches are used in the experimental results section of this
work.

Toward Unaligned Guided Thermal Super-Resolution —
UGSR: In [8] two models are proposed for guided super-
resolution of unaligned thermal and visible images without
pixel-to-pixel alignment. Figure 2 depicts the proposed UGSR
architecture. The first model employs a correlation-based fea-
ture misalignment loss (UGSR-FA), while the second model
includes a misalignment map estimation block to compensate
for misalignment in an end-to-end manner (UGSR-ME). The
USGR architecture is built with two branches of encoders,
one for the low-resolution thermal image and the other for
the high-resolution guide image. The encoders use dense
blocks and a spatial attention module for feature extraction
and rescaling. The features are merged and fed to a decoder
for generating the final high-resolution thermal image. Bicubic
upsampling of the input image is also used for residual
learning and the spatial attention module is applied to remove
texture edges or other information that is not common to both
images and could cause artifacts. According to the authors,
the correlation-based feature misalignment model (UGSR-FA)
reaches the best results.

Guided Super-Resolution as Pixel-to-Pixel Transforma-
tion — PixTransform: In [9], instead of using a standard
super-resolution approach, the authors propose a pixel-to-pixel
transformation from the guiding image to the target image
domain without changing the resolution (see illustration in
Fig. 3). The authors use a multi-layer perceptron that takes the
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Fig. 3. Pixel-to-Pixel transformation architecture (illustration from [9]).

guiding image’s pixel values, which are augmented with two
extra channels to encode pixel location and passed through a
convolutional network with 1×1 kernels. This setup allows for
encoding spatial context relations implicitly, with a single set
of transformation parameters that work for all pixels, making it
unsupervised. The method fits a unique set of weights for each
new image using its pixels as training data and consistency
with the low-resolution source as supervision. The weights of
the model are learned by minimizing the discrepancy between
the source image and the downsampled target image.

Pyramidal Edge-Maps and Attention-based Guided
Thermal Super-Resolution — PAGSR: This approach is
intended for guided super-resolution of thermal images using
visible images [14]; it relies on pyramidal edge maps to
reduce artifacts in the resulting images. The method proposes
to carry out the super-resolution using the pyramidal edges
obtained from multiple hierarchical levels resulting from the
merge of previously extracted edge features. The authors use
attention mechanisms with this border information in the
super-resolution network to integrate them. The key challenge
is to extract high-frequency details from the guiding image
and integrate them with the thermal image in an adaptive way
so that the reconstructed image is both visually pleasing and
free from artifacts. Applying this method improves the texture
of the objects present in the images resulting from the guided
super-resolution. Figure 4 shows the architecture illustrating
the LR thermal image as well as the edges used as inputs.

Deformable Kernel Networks for Joint Image Filtering
— DKN: The authors in [10] propose a new approach to
joint image filtering called the deformable kernel network
(DKN), which uses sparse and spatially-variant kernels instead
of nonlinear activation of spatially-invariant kernels. DKN
outputs sets of neighbors and corresponding weights for each
pixel and the filtering result is computed as a weighted
average. The authors also propose a fast version of DKN
that runs 17 times faster for an image of size 640×480.
The effectiveness and flexibility of DKN are demonstrated on
various computer vision tasks such as depth map upsampling,

TABLE I
RESULTS OF THE GUIDED SUPER-RESOLUTION APPROACHES EVALUATED

IN THE CURRENT WORK, A ×8 SCALE FACTOR IS CONSIDERED.

Methods Visible guidance Synthetic guidance
PSNR SSIM PSNR SSIM

PixTransform [9] 23.360 0.627 23.831 0.742
PAGSR [14] 27.454 0.831 28.843 0.869
FDKN [10] 26.924 0.825 30.302 0.926
UGSR [8] 28.524 0.860 33.312 0.950
DCTNet [12] 28.910 0.835 32.215 0.922

saliency map upsampling, cross-modality image restoration,
texture removal, and semantic segmentation. Figure 5 shows
the DKN architecture of the guided filtering, which involves
learning kernel weights and spatial sampling offsets from
feature maps of guidance and target images to obtain a residual
image. The model is fully convolutional and learned end-
to-end, using element-wise multiplication and dot product
operations. Reshaping and residual connections are also used.

Discrete Cosine Transform Network for Guided Depth
Map Super-Resolution — DCTNet: A novel approach for
Guided Depth Super-Resolution (GDSR) has been presented
in [12]. The approach is based on the usage of the Discrete
Cosine Transform Network (DCTNet) to improve the recon-
struction of high-resolution depth maps from low-resolution
ones. The proposed DCTNet method addresses the issues
in GDSR by utilizing a Discrete Cosine Transform (DCT)
to reconstruct high-resolution depth features, a semi-coupled
feature extraction process with shared and individual convo-
lutional kernels, and an attention mechanism to emphasize
important edges in the image, see Fig. 6. The DCTNet consists
of several modules that work together to perform super-
resolution on a low-resolution depth image and HR RGB
image. The first module, called SCFE, extracts both shared and
private features from the two images. The GESA module then
uses the RGB features to obtain edge attention weights that
are helpful for super-resolution. These features and weights
are then processed by the DCT module, which uses the DCT
in each channel to obtain high-resolution depth features. The
final step is performed by the reconstruction module, which
outputs the super-resolved depth map.

C. Datasets

The first dataset, known as M3FD, was recently introduced
for image fusion in Liu et al. [27]. This dataset was used
to train the thermal image-like image generator described in
Section II-A. Images were converted to HSV color space and
the brightness channel was extracted to aid translation from
the visible to the thermal domain. The M3FD data set contains
4500 pairs of visible and infrared images acquired using a
binocular optical and infrared sensor. These images depict
various scenes, such as highways, campuses, streets, forests,
and more, captured during the day, night, and under cloudy
skies. In addition to the M3FD dataset, we also use our own
cross-spectral high-resolution dataset known as the Thermal
Stereo dataset to evaluate the generalization capabilities of
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Fig. 4. Pyramidal edge-maps and attention-based architecture for guiding thermal image super-resolution (illustration from [14]).

Fig. 5. DKN architecture (illustration from [10]).

Fig. 6. Guided depth super-resolution architecture (illustration from [12]).

our synthetic thermal image generator. With these thermal-
like generated images, it has been possible to train and
evaluate each of the guided superresolution models already
presented above, using synthetic images. This custom dataset
was acquired using FLIR FC-6320 and TAU2 cameras and
consists of 200 pairs of images, comprising both thermal
images and their corresponding visible images. To ensure
accurate alignment between the two modalities, the images
were registered using the Elastix method [28], resulting in
well-aligned pairs with a resolution of 640x480 pixels.

III. EXPERIMENTAL RESULTS

This section presents the experimental results obtained
with the state-of-the-art guided super-resolution techniques
presented in Section II-B using two different strategies—i.e.,
guided with the visible spectrum images and guided with the
synthesized thermal images generated in Section II-A. Also,
this section presents the comprehensive evaluation of state-of-
the-art guided super-resolution approaches discussed in Sec-
tion II-B. Our evaluation encompasses two distinct strategies:
i) thermal SR using HR RGB images as guidance and ii)
thermal image SR considering HR thermal image-like as guid-
ance. To conduct quantitative and qualitative evaluations, we
use the Thermal Stereo dataset. Prior to evaluation, all images
were pre-processed by resizing them to a uniform resolution of
512×512 pixels. For the generation of LR thermal images, we
applied downsampling using bicubic interpolation on the HR
thermal images. To train the guided super-resolution methods,
we split the Thermal Stereo dataset up into three subsets: 160
image pairs for training, 30 image pairs for validation, and 10
image pairs for testing.

Our evaluation focused on the five state-of-the-art guided
super-resolution methods presented in Section II-B. These
methods were evaluated using the proposed strategy, which
involves training on both visible and synthesized thermal
images, with a scale factor of ×8. To assess the performance
of these methods, we employed widely used metrics such as
SSIM (Structural Similarity Index) and PSNR (Peak Signal-
to-Noise Ratio). Table I shows the results obtained by both
guided strategies in all the evaluated approaches. In all cases,
improvements can be seen in both metrics when using similar
domain data images as a guide. Qualitatively, the super-
resolved images with our strategy have greater contour detail
than the images produced by the guided approaches with
visible spectrum imaging. Fig. 7 shows the qualitative and
quantitative results, in a sample of the test set, which was
obtained with each superresolution method according to both
guiding strategies. The SSIM and PSNR values are shown
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Fig. 7. (top) Illustration of LR thermal image, HR thermal image (ground truth), HR visible spectrum image, and the synthesized HR thermal image. (middle)
Results of (×8) super-resolution guided by the HR visible spectrum image. (bottom) Results of (×8) super-resolution guided by the proposed synthesized HR
thermal image — SSIM and PSNR values in parenthesis.

in parentheses. In all the evaluated state-of-the-art techniques
the proposed strategy helps to improve results, in some cases,
more than 18% in SSIM value, such is the case of PixTrans-
form and more than 16% in PSNR value, such is the case of
the UGSR architecture.

IV. CONCLUSIONS

This work shows that guided image processing approaches,
in particular guided thermal image super-resolution, can be
improved if guiding information overlaps the guided domain.
Hence, the key factor is to have an efficient generator network
able to synthesize the working domain. As more realistic
the generated images as better the guidance process will be
performed. The experiments involving the generation of syn-

thesized thermal images are important because they demon-
strate the ability to create high-quality thermal image-like
representations that can be used as guidance in image process-
ing approaches. By using synthesized images, the evaluated
models can easily obtain the guidance information needed
for super-resolution. As a future work, we will extend the
present study to the guided depth super-resolution and guided
denoising image processing. One of the limitations is the need
to have high-quality guidance images available, which may
not be feasible to acquire. Additionally, the number of images
available may be limited, which could affect the performance
of the model. Future work should explore strategies to handle
scenarios that are not as complex or have lower resolution
quality. Also the other limitation may be the minimal resource
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requirements for our approach to support the scalability of
images and computational resources, particularly when dealing
with large-scale data sets or high-resolution images and the
computational power and memory required for processing.
which can become substantial as the complexity and size
of the guidance and target data increase. Mitigating these
challenges would involve optimizing the algorithms to ensure
that our approach remains feasible and accessible in resource-
constrained scenarios.
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