toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Patricia L. Suarez; Angel D. Sappa; Boris X. Vintimilla pdf  openurl
  Title Cross-spectral image dehaze through a dense stacked conditional GAN based approach. Type Conference Article
  Year 2018 Publication 14th IEEE International Conference on Signal Image Technology & Internet based Systems (SITIS 2018) Abbreviated Journal  
  Volume Issue Pages 358-364  
  Keywords  
  Abstract (down) This paper proposes a novel approach to remove haze from RGB images using a near infrared images based on a dense stacked conditional Generative Adversarial Network (CGAN). The architecture of the deep network implemented receives, besides the images with haze, its corresponding image in the near infrared spectrum, which serve to accelerate the learning process of the details of the characteristics of the images. The model uses a triplet layer that allows the independence learning of each channel of the visible spectrum image to remove the haze on each color channel separately. A multiple loss function scheme is proposed, which ensures balanced learning between the colors and the structure of the images. Experimental results have shown that the proposed method effectively removes the haze from the images. Additionally, the proposed approach is compared with a state of the art approach showing better results.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number gtsi @ user @ Serial 92  
Permanent link to this record
 

 
Author Patricia L. Suarez; Angel D. Sappa; Boris X. Vintimilla; Riad I. Hammoud pdf  openurl
  Title Deep Learning based Single Image Dehazing Type Conference Article
  Year 2018 Publication 14th IEEE Workshop on Perception Beyond the Visible Spectrum – In conjunction with CVPR 2018. Salt Lake City, Utah. USA Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract (down) This paper proposes a novel approach to remove haze

degradations in RGB images using a stacked conditional

Generative Adversarial Network (GAN). It employs a triplet

of GAN to remove the haze on each color channel independently.

A multiple loss functions scheme, applied over a

conditional probabilistic model, is proposed. The proposed

GAN architecture learns to remove the haze, using as conditioned

entrance, the images with haze from which the clear

images will be obtained. Such formulation ensures a fast

model training convergence and a homogeneous model generalization.

Experiments showed that the proposed method

generates high-quality clear images.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number gtsi @ user @ Serial 83  
Permanent link to this record
 

 
Author Patricia L. Suarez; Angel D. Sappa; Boris X. Vintimilla; Riad I. Hammoud pdf  openurl
  Title Image Vegetation Index through a Cycle Generative Adversarial Network Type Conference Article
  Year 2019 Publication Conference on Computer Vision and Pattern Recognition Workshops (CVPR 2019); Long Beach, California, United States Abbreviated Journal  
  Volume Issue Pages 1014-1021  
  Keywords  
  Abstract (down) This paper proposes a novel approach to estimate the

Normalized Difference Vegetation Index (NDVI) just from

an RGB image. The NDVI values are obtained by using

images from the visible spectral band together with a synthetic near infrared image obtained by a cycled GAN. The

cycled GAN network is able to obtain a NIR image from

a given gray scale image. It is trained by using unpaired

set of gray scale and NIR images by using a U-net architecture and a multiple loss function (gray scale images are

obtained from the provided RGB images). Then, the NIR

image estimated with the proposed cycle generative adversarial network is used to compute the NDVI index. Experimental results are provided showing the validity of the proposed approach. Additionally, comparisons with previous

approaches are also provided.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number gtsi @ user @ Serial 106  
Permanent link to this record
 

 
Author Patricia L. Suarez; Angel D. Sappa; Boris X. Vintimilla pdf  url
openurl 
  Title Vegetation Index Estimation from Monospectral Images Type Conference Article
  Year 2018 Publication 15th International Conference, Image Analysis and Recognition (ICIAR 2018), Póvoa de Varzim, Portugal. Lecture Notes in Computer Science Abbreviated Journal  
  Volume 10882 Issue Pages 353-362  
  Keywords  
  Abstract (down) This paper proposes a novel approach to estimate Normalized

Difference Vegetation Index (NDVI) from just the red channel of

a RGB image. The NDVI index is defined as the ratio of the difference

of the red and infrared radiances over their sum. In other words, information

from the red channel of a RGB image and the corresponding

infrared spectral band are required for its computation. In the current

work the NDVI index is estimated just from the red channel by training a

Conditional Generative Adversarial Network (CGAN). The architecture

proposed for the generative network consists of a single level structure,

which combines at the final layer results from convolutional operations

together with the given red channel with Gaussian noise to enhance

details, resulting in a sharp NDVI image. Then, the discriminative model

estimates the probability that the NDVI generated index came from the

training dataset, rather than the index automatically generated. Experimental

results with a large set of real images are provided showing that

a Conditional GAN single level model represents an acceptable approach

to estimate NDVI index.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number gtsi @ user @ Serial 82  
Permanent link to this record
 

 
Author Xavier Soria; Edgar Riba; Angel D. Sappa pdf  isbn
openurl 
  Title Dense Extreme Inception Network: Towards a Robust CNN Model for Edge Detection Type Conference Article
  Year 2020 Publication 2020 IEEE Winter Conference on Applications of Computer Vision (WACV) Abbreviated Journal  
  Volume Issue 9093290 Pages 1912-1921  
  Keywords  
  Abstract (down) This paper proposes a Deep Learning based edge de- tector, which is inspired on both HED (Holistically-Nested Edge Detection) and Xception networks. The proposed ap- proach generates thin edge-maps that are plausible for hu- man eyes; it can be used in any edge detection task without previous training or fine tuning process. As a second contri- bution, a large dataset with carefully annotated edges, has been generated. This dataset has been used for training the proposed approach as well the state-of-the-art algorithms for comparisons. Quantitative and qualitative evaluations have been performed on different benchmarks showing im- provements with the proposed method when F-measure of ODS and OIS are considered.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-172816553-0 Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number cidis @ cidis @ Serial 126  
Permanent link to this record
 

 
Author Jorge Alvarez Tello; Mireya Zapata; Dennys Paillacho pdf  openurl
  Title Kinematic optimization of a robot head movements for the evaluation of human-robot interaction in social robotics. Type Conference Article
  Year 2019 Publication 10th International Conference on Applied Human Factors and Ergonomics and the Affiliated Conferences (AHFE 2019), Washington D.C.; United States. Advances in Intelligent Systems and Computing Abbreviated Journal  
  Volume 975 Issue Pages 108-118  
  Keywords  
  Abstract (down) This paper presents the simplification of the head movements from

the analysis of the biomechanical parameters of the head and neck at the

mechanical and structural level through CAD modeling and construction with

additive printing in ABS/PLA to implement non-verbal communication strategies and establish behavior patterns in the social interaction. This is using in the

denominated MASHI (Multipurpose Assistant robot for Social Human-robot

Interaction) experimental robotic telepresence platform, implemented by a

display with a fish-eye camera along with the mechanical mechanism, which

permits 4 degrees of freedom (DoF). In the development of mathematicalmechanical modeling for the kinematics codification that governs the robot and

the autonomy of movement, we have the Pitch, Roll, and Yaw movements, and

the combination of all of them to establish an active communication through

telepresence. For the computational implementation, it will be show the rotational matrix to describe the movement.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number gtsi @ user @ Serial 108  
Permanent link to this record
 

 
Author Henry O. Velesaca, Steven Araujo, Patricia L. Suarez, Ángel Sanchez & Angel D. Sappa pdf  isbn
openurl 
  Title Off-the-Shelf Based System for Urban Environment Video Analytics. Type Conference Article
  Year 2020 Publication The 27th International Conference on Systems, Signals and Image Processing (IWSSIP 2020) Abbreviated Journal  
  Volume 2020-July Issue 9145121 Pages 459-464  
  Keywords Greenhouse gases, carbon footprint, object detection, object tracking, website framework, off-the-shelf video analytics.  
  Abstract (down) This paper presents the design and implementation details of a system build-up by using off-the-shelf algorithms for urban video analytics. The system allows the connection to public video surveillance camera networks to obtain the necessary

information to generate statistics from urban scenarios (e.g., amount of vehicles, type of cars, direction, numbers of persons, etc.). The obtained information could be used not only for traffic management but also to estimate the carbon footprint of urban scenarios. As a case study, a university campus is selected to

evaluate the performance of the proposed system. The system is implemented in a modular way so that it is being used as a testbed to evaluate different algorithms. Implementation results are provided showing the validity and utility of the proposed approach.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 21578672 ISBN 978-172817539-3 Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number cidis @ cidis @ Serial 125  
Permanent link to this record
 

 
Author Rafael E. Rivadeneira, Angel D. Sappa, Boris X. Vintimilla, Jin Kim, Dogun Kim et al. pdf  url
openurl 
  Title Thermal Image Super-Resolution Challenge Results- PBVS 2022. Type Conference Article
  Year 2022 Publication Computer Vision and Pattern Recognition Workshops, (CVPRW 2022), junio 19-24. Abbreviated Journal CONFERENCE  
  Volume 2022-June Issue Pages 349-357  
  Keywords  
  Abstract (down) This paper presents results from the third Thermal Image

Super-Resolution (TISR) challenge organized in the Perception Beyond the Visible Spectrum (PBVS) 2022 workshop.

The challenge uses the same thermal image dataset as the

first two challenges, with 951 training images and 50 validation images at each resolution. A set of 20 images was

kept aside for testing. The evaluation tasks were to measure

the PSNR and SSIM between the SR image and the ground

truth (HR thermal noisy image downsampled by four), and

also to measure the PSNR and SSIM between the SR image

and the semi-registered HR image (acquired with another

camera). The results outperformed those from last year’s

challenge, improving both evaluation metrics. This year,

almost 100 teams participants registered for the challenge,

showing the community’s interest in this hot topic.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number cidis @ cidis @ Serial 175  
Permanent link to this record
 

 
Author A. Amato; F. Lumbreras; Angel D. Sappa pdf  url
openurl 
  Title A general-purpose crowdsourcing platform for mobile devices Type Conference Article
  Year 2014 Publication Computer Vision Theory and Applications (VISAPP), 2014 International Conference on, Lisbon, Portugal, 2014 Abbreviated Journal  
  Volume 3 Issue Pages 211-215  
  Keywords Crowdsourcing Platform, Mobile Crowdsourcing  
  Abstract (down) This paper presents details of a general purpose micro-taskon-demand platform based on the crowdsourcing philosophy. This platformwas specifically developed for mobile devices in order to exploit the strengths of such devices; namely: i) massivity, ii) ubiquityand iii) embedded sensors.The combined use of mobile platforms and the crowdsourcing model allows to tackle from the simplest to the most complex tasks.Users experience is the highlighted feature of this platform (this fact is extended to both task-proposer and task- solver).Proper tools according with a specific task are provided to a task-solver in order to perform his/her job in a simpler, faster and appealing way.Moreover, a task can be easily submitted by just selecting predefined templates, which cover a wide range of possible applications.Examples of its usage in computer vision and computer games are provided illustrating the potentiality of the platform.  
  Address  
  Corporate Author Thesis  
  Publisher IEEE Place of Publication Lisbon, Portugal Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference Computer Vision Theory and Applications (VISAPP), 2014 International Conference on  
  Notes Approved no  
  Call Number cidis @ cidis @ Serial 25  
Permanent link to this record
 

 
Author Raul A. Mira; Patricia L. Suarez; Rafael E. Rivadeneira; Angel D. Sappa pdf  openurl
  Title PETRA: A Crowdsourcing-Based Platform for Rocks Data Collection and Characterization Type Conference Article
  Year 2019 Publication IEEE ETCM 2019 Fourth Ecuador Technical Chapters Meeting; Guayaquil, Ecuador Abbreviated Journal  
  Volume Issue Pages 1-6  
  Keywords  
  Abstract (down) This paper presents details of a distributed platform intended for data acquisition, evaluation, storage and visualization, which is fully implemented under the crowdsourcing paradigm. The proposed platform is the result from collaboration between computer science and petrology researchers and it is intended for academic purposes. The platform is designed within a MTV (Model, Template and View) architecture and also designed for a collaborative data store and managing of rocks from multiple readers and writers, taking advantage of ubiquity of web applications, and neutrality of researchers from different

communities to validate the data. The platform is being used and validated by students and academics from our university; in the near future it will be open to other users interested on this topic.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number gtsi @ user @ Serial 112  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: