|
Records |
Links |
|
Author |
Patricia L. Suarez; Angel D. Sappa; Boris X. Vintimilla; Riad I. Hammoud |

|
|
Title |
Image Vegetation Index through a Cycle Generative Adversarial Network |
Type |
Conference Article |
|
Year |
2019 |
Publication |
Conference on Computer Vision and Pattern Recognition Workshops (CVPR 2019); Long Beach, California, United States |
Abbreviated Journal |
|
|
|
Volume  |
|
Issue |
|
Pages |
1014-1021 |
|
|
Keywords |
|
|
|
Abstract |
This paper proposes a novel approach to estimate the
Normalized Difference Vegetation Index (NDVI) just from
an RGB image. The NDVI values are obtained by using
images from the visible spectral band together with a synthetic near infrared image obtained by a cycled GAN. The
cycled GAN network is able to obtain a NIR image from
a given gray scale image. It is trained by using unpaired
set of gray scale and NIR images by using a U-net architecture and a multiple loss function (gray scale images are
obtained from the provided RGB images). Then, the NIR
image estimated with the proposed cycle generative adversarial network is used to compute the NDVI index. Experimental results are provided showing the validity of the proposed approach. Additionally, comparisons with previous
approaches are also provided. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
gtsi @ user @ |
Serial |
106 |
|
Permanent link to this record |
|
|
|
|
Author |
Rafael E. Rivadeneira; Patricia L. Suarez; Angel D. Sappa; Boris X. Vintimilla. |

|
|
Title |
Thermal Image SuperResolution through Deep Convolutional Neural Network. |
Type |
Conference Article |
|
Year |
2019 |
Publication |
16th International Conference on Image Analysis and Recognition (ICIAR 2019); Waterloo, Canadá |
Abbreviated Journal |
|
|
|
Volume  |
|
Issue |
|
Pages |
417-426 |
|
|
Keywords |
|
|
|
Abstract |
Due to the lack of thermal image datasets, a new dataset has been acquired for proposed a superesolution approach using a Deep Convolution Neural Network schema. In order to achieve this image enhancement process a new thermal images dataset is used. Di?erent experiments have been carried out, ?rstly, the proposed architecture has been trained using only images of the visible spectrum, and later it has been trained with images of the thermal spectrum, the results showed that with the network trained with thermal images, better results are obtained in the process of enhancing the images, maintaining the image details and perspective. The thermal dataset is available at http://www.cidis.espol.edu.ec/es/dataset |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
gtsi @ user @ |
Serial |
103 |
|
Permanent link to this record |
|
|
|
|
Author |
Patricia L. Suarez; Angel D. Sappa; Boris X. Vintimilla |

|
|
Title |
Image patch similarity through a meta-learning metric based approach |
Type |
Conference Article |
|
Year |
2019 |
Publication |
15th International Conference on Signal Image Technology & Internet based Systems (SITIS 2019); Sorrento, Italia |
Abbreviated Journal |
|
|
|
Volume  |
|
Issue |
|
Pages |
511-517 |
|
|
Keywords |
|
|
|
Abstract |
Comparing images regions are one of the core methods used on computer vision for tasks like image classification, scene understanding, object detection and recognition. Hence, this paper proposes a novel approach to determine similarity of image regions (patches), in order to obtain the best representation of image patches. This problem has been studied by many researchers presenting different approaches, however, the ability to find the better criteria to measure the similarity on image regions are still a challenge. The present work tackles this problem using a few-shot metric based meta-learning framework able to compare image regions and determining a similarity measure to decide if there is similarity between the compared patches. Our model is training end-to-end from scratch. Experimental results
have shown that the proposed approach effectively estimates the similarity of the patches and, comparing it with the state of the art approaches, shows better results. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
gtsi @ user @ |
Serial |
115 |
|
Permanent link to this record |
|
|
|
|
Author |
Omar Coello, Moisés Coronel, Darío Carpio, Boris X. Vintimilla & Luis Chuquimarca |


|
|
Title |
Enhancing Apple’s Defect Classification: Insights from Visible Spectrum and Narrow Spectral Band Imaging |
Type |
Conference Article |
|
Year |
2024 |
Publication |
14th International Conference on Pattern Recognition Systems (ICPRS) Londres 15 – 18 July 2024 |
Abbreviated Journal |
|
|
|
Volume  |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
|
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
979-835037565-7 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
cidis @ cidis @ |
Serial |
244 |
|
Permanent link to this record |
|
|
|
|
Author |
Luis Chuquimarca, Boris X. Vintimilla & Sergio Velastin |


|
|
Title |
Classifying Healthy and Defective Fruits with a Multi-Input Architecture and CNN Models |
Type |
Conference Article |
|
Year |
2024 |
Publication |
14th International Conference on Pattern Recognition Systems (ICPRS) Londres 15 – 18 July 2024 |
Abbreviated Journal |
|
|
|
Volume  |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
|
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
979-835037565-7 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
cidis @ cidis @ |
Serial |
245 |
|
Permanent link to this record |