toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Armin Mehri, Parichehr Behjati, Dario Carpio, and Angel D. Sappa pdf  openurl
  Title SRFormer: Efficient Yet Powerful Transformer Network For Single Image Super Resolution Type Journal Article
  Year 2023 Publication IEEE access Abbreviated Journal  
  Volume Vol. 11 Issue Pages (down) 121457 - 121469  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 21693536 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number cidis @ cidis @ Serial 227  
Permanent link to this record
 

 
Author Armin Mehri; Parichehr Behjati; Angel Domingo Sappa pdf  openurl
  Title TnTViT-G: Transformer in Transformer Network for Guidance Super Resolution. Type Journal Article
  Year 2023 Publication IEEE Access Abbreviated Journal  
  Volume Vol. 11 Issue Pages (down) pp. 11529-11540  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 21693536 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number cidis @ cidis @ Serial 207  
Permanent link to this record
 

 
Author Armin Mehri; Angel D. Sappa pdf  openurl
  Title Colorizing Near Infrared Images through a Cyclic Adversarial Approach of Unpaired Samples Type Conference Article
  Year 2019 Publication Conference on Computer Vision and Pattern Recognition Workshops (CVPR 2019); Long Beach, California, United States Abbreviated Journal  
  Volume Issue Pages (down) 971-979  
  Keywords  
  Abstract This paper presents a novel approach for colorizing

near infrared (NIR) images. The approach is based on

image-to-image translation using a Cycle-Consistent adversarial network for learning the color channels on unpaired dataset. This architecture is able to handle unpaired datasets. The approach uses as generators tailored

networks that require less computation times, converge

faster and generate high quality samples. The obtained results have been quantitatively—using standard evaluation

metrics—and qualitatively evaluated showing considerable

improvements with respect to the state of the art
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number gtsi @ user @ Serial 105  
Permanent link to this record
 

 
Author Rafael E. Rivadeneira; Angel D. Sappa; Boris X. Vintimilla; Lin Guo; Jiankun Hou; Armin Mehri; Parichehr Behjati; Ardakani Heena Patel; Vishal Chudasama; Kalpesh Prajapati; Kishor P. Upla; Raghavendra Ramachandra; Kiran Raja; Christoph Busch; Feras Almasri; Olivier Debeir; Sabari Nathan; Priya Kansal; Nolan Gutierrez; Bardia Mojra; William J. Beksi pdf  isbn
openurl 
  Title Thermal Image Super-Resolution Challenge – PBVS 2020 Type Conference Article
  Year 2020 Publication The 16th IEEE Workshop on Perception Beyond the Visible Spectrum on the Conference on Computer Vision and Pattern Recongnition (CVPR 2020) Abbreviated Journal  
  Volume 2020-June Issue 9151059 Pages (down) 432-439  
  Keywords  
  Abstract This paper summarizes the top contributions to the first challenge on thermal image super-resolution (TISR) which was organized as part of the Perception Beyond the Visible Spectrum (PBVS) 2020 workshop. In this challenge, a novel thermal image dataset is considered together with stateof-the-art approaches evaluated under a common framework.

The dataset used in the challenge consists of 1021 thermal images, obtained from three distinct thermal cameras at different resolutions (low-resolution, mid-resolution, and high-resolution), resulting in a total of 3063 thermal images. From each resolution, 951 images are used for training and 50 for testing while the 20 remaining images are used for two proposed evaluations. The first evaluation consists of downsampling the low-resolution, midresolution, and high-resolution thermal images by x2, x3 and x4 respectively, and comparing their super-resolution

results with the corresponding ground truth images. The second evaluation is comprised of obtaining the x2 superresolution from a given mid-resolution thermal image and comparing it with the corresponding semi-registered highresolution thermal image. Out of 51 registered participants, 6 teams reached the final validation phase.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 21607508 ISBN 978-172819360-1 Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number cidis @ cidis @ Serial 123  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: