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ABSTRACT Image Super Resolution is a potential approach that can improve the image quality of
low-resolution optical sensors, leading to improved performance in various industrial applications. It is
important to emphasize that most state-of-the-art super resolution algorithms often use a single channel
of input data for training and inference. However, this practice ignores the fact that the cost of acquiring
high-resolution images in various spectral domains can differ a lot from one another. In this paper, we attempt
to exploit complementary information from a low-cost channel (visible image) to increase the image quality
of an expensive channel (infrared image). We propose a dual stream Transformer-based super resolution
approach that uses the visible image as a guide to super-resolve another spectral band image. To this
end, we introduce Transformer in Transformer network for Guidance super resolution, named TnTViT-G,
an efficient and effective method that extracts the features of input images via different streams and fuses
them together at various stages. In addition, unlike other guidance super resolution approaches, TnTViT-G
is not limited to a fixed upsample size and it can generate super-resolved images of any size. Extensive
experiments on various datasets show that the proposed model outperforms other state-of-the-art super
resolution approaches. TnTViT-G surpasses state-of-the-art methods by up to 0.19 ∼ 2.3dB, while it is
memory efficient.

INDEX TERMS Single image super resolution, guidance super resolution, transformers, convolutional
neural network.

I. INTRODUCTION
In recent years, image super resolution, has achieved signifi-
cant interest from both academic and industrial communities.
The process of reconstructing a high-resolution (HR) image
from its low-resolution (LR) counterpart is referred to as
the super resolution (SR) problem in the field of image
processing. Due to the fact that a single LR image might
have numerous mappings from LR to SR, SR is an ill-posed
problem, which is also known as a one-to-many problem.
Thus, numerous SR methods have been introduced to
reconstruct a high-resolution image from its low-resolution
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ones, such as traditional approaches like the self-exemplars
approach [1], anchoring neighborhood regression [2], sparse
representation [3] and random forest [4].

More recently, by advancing the deep learning approaches,
several Convolutional Neural Networks (CNNs) and Trans-
former networks are being used as a solution for the
ill-posed SR problem. This is largely attributable to the
recent successes of deep learning approaches in a variety
of vision tasks, such as object detection, image recognition,
semantic segmentation, image classification, and many
others. The first work in this direction has been presented
by Dong et al. [5], who developed a three-layer CNN
model to train a nonlinear LR-to-HRmapping function called
SRCNN, which greatly outperforms the traditional machine
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FIGURE 1. An example of super-resolved results comparison on M3FD
dataset for scale factor ×4.

learning-based methods. The majority of later expansions
of SRCNN enhance SR accuracy by employing more
complicated network designs (such as RDN [6], EDSR [6],
RCAN [7], among others) or by utilizing a training dataset
with better quality.

However, in real-world applications, the environment
around us is dynamic and changing all the time due to many
known and unknown reasons, which require dealing with var-
ious challenging conditions such as rain, fog, occlusions, poor
lighting, low resolution, and many others. All these factors
make it difficult for an algorithm that uses only a visible-band
sensor (RGB) to achieve high performance under these
conditions [8]. Therefore, the visible image is found to
be insufficient for such cases, and cross-spectral images
have become increasingly necessary in many applications
as they are robust against obstacles in visual environments
and provide support to the RGB images. Cross-spectral
images (e.g., infrared images) have been used in many
ranges of specialized fields such as surveillance [9], military
affairs [10], pedestrian tracking [11], firefighting [12] and
many others. However, the associated costs of having
such images grow significantly with the increase in their
resolution.

Various approaches and algorithms have been proposed
to improve the resolution of different infrared images using
hardware or software. Employing low-resolution cameras
that are less expensive than high-end cross-spectral domain
cameras and using SR methods to increase the resolution
of such images is one strategy to boost the consumer
applicability of such cameras to deal with a challenging
situation at a lower cost. However, as previously stated, single
image SR (SISR) is a tricky operation that becomes even
more difficult when the input image has a very poor resolution
(such as the ones produced by inexpensive cross/multi-
spectral sensors), which SISR techniques may hallucinate
missing details from low-resolution inputs and therefore
yielding to artifacts [13].

To address the aforementioned problems, a fundamental
solution is to take advantage of any additional information
that can be found with the low-resolution infrared images as
most cross-spectral cameras are accompanied by an inbuilt
visible RGB camera with higher resolution. As a result,

it is permissible to use low-cost visible images as additional
information to considerably improve the accuracy of the
SR results obtained from the costly infrared images. For
example, long-wave infrared (LWIR) detectors, required to
capture thermal images, are sealed inside their own separate
vacuum packages in order to carry out the high-precision
thermal measurement, which is a procedure that is both
time-consuming and costly [14]. As a result, the cost of
LWIR sensors is much higher than that of RGB ones with
comparable spatial resolutions. Themajority of commercially
available LWIR cameras capture LR images (for example,
160 × 120 or even 80 × 60 pixels) [15], in which significant
information is severely lost.

In this paper, we attempt to boost the performance of
image restoration in the expensive channel by taking into
account the complementary information captured by an
additional low-cost visible sensor. The primary focus of
this work is to build a deep learning model that applies
multimodal sensor fusion using visible cross-spectral images.
The proposed approach is evaluated with two different
schemes (i.e., thermal infrared (LWIR), and near infrared
(NIR)), but is also valid for any other input data. The proposed
model accepts two images as inputs and integrates them
in such a way as to enhance the generated infrared image
resolution with fine detail with the help of the corresponding
visible image. Thus, a guidance super resolution network
(TnTViT − G) is proposed to enhance the LR infrared
image by integrating the rich information from the HR visual
image. We show that HR visual images can help the model
fill in the missing values and generate higher frequency
details in the reconstructed SR infrared image, as shown in
Fig. 1.
The main contributions can be summarized as follows:

• We present TnTViT-G, an efficient dual-stream
Transformer-based network for guidance super resolu-
tion (GSR) task. The TnTViT-G Transformer blocks are
built on top of the idea of the Vision Transformer (ViT)
by completely revising the self-attention layer.

• We present a lightweight Dual Attention layer that
significantly improves the reconstruction quality by
generating a global attention map from two local
attention weights, which are obtained individually by
two branches in parallel while it is not memory hunger.

• We present a high-quality arbitrary upsampling module,
which is capable of producing SR images at any scale
factor.

• Extensive experiments show that TnTViT-G outper-
formsCNNand transformer-based networks on different
benchmark datasets for the GSR task.

The rest of the paper is organized as follows: Section II
discusses the related work. Section III describes the proposed
TnTViT-G and its core components in detail. Experimental
comparisons against several state-of-the-art methods are
presented in Section IV. The model investigation is presented
in section V. Section VI concludes the paper.
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FIGURE 2. The overall network architecture of the proposed TnTViT-G.

II. RELATED WORK
In this section, the most recent state-of-the-art SR deep learn-
ing CNN and Transformer-based approaches are detailed.

A. DEEP LEARNING BASED SINGLE IMAGE
SUPER-RESOLUTION
Single Image Super Resolution aims to restore the
well-detailed image from its low-quality counterpart. The
first deep learning-based work has been introduced by
Dong et al. [5] (SRCNN), which uses a convolutional neural
network to tackle the SR task. The SRCNN presents a
shallow neural network that receives an upsampled image as
an input that costs extra computation. Later on, to address
this drawback, FSRCNN [16] and ESPCN [17] have been
proposed by receiving the LR image as input to reduce the
large computational and run-time cost and upsampling the
features near the output of the network by a single transposed
convolution layer. Even though the strength of deep learning
comes from deep layers, the above-mentioned methods are
referred to as shallow networks. Therefore, Kim et al. [18] use
residual learning to ease the training challenges and increase
the depth of their network by adding 20 convolutional
layers. Then, [19] proposes a memory block in MemNet
for deeper networks and solves the problem of long-term
dependency with 84 layers. Lim et al. [20] introduces EDSR
by expanding the network size and enhancing the residual
block by omitting the batch normalization from the residual
block. Zhang et al. [6] propose RDN with residual and dense
skip connections to fully use hierarchical features.

Moreover, in recent years, there has been a rise in interest
in developing lightweight approaches for super resolution
tasks in order to lower the high computing cost of SR
task. Ahn et al. [21] design an efficient network that is
suitable for the mobile scenario. Later, [22] introduces
MAFFSRN by proposing multi-attention blocks to improve
the performance. LatticeNet [23] introduces an economical
structure to adaptively combine residual blocks. Recently,

OverNet presented by [24], designs an efficient network
structure with a multi-loss function to boost the network’s
performance. Also, a neural architecture search (NAS)-
based strategy has been proposed in SISR to construct
efficient networks. MoreMNA-S [25] and FALSR [26] are
two examples of networks that use NAS strategies in their
network. However, due to the limitations of the NAS strategy,
the performance of these models is limited.

B. VISION TRANSFORMER
Natural Language Processing (NLP) is revolutionized by
the groundbreaking performance of Transformer networks.
Transformer networks, unlike Convolutional Neural Network
approaches, have the benefit of being able to capture
long-range dependencies of the input sequences by using a
self-attention layer. The ‘‘self-attention’’ layer is the funda-
mental concept of the Transformer network. The Computer
Vision community was inspired to modify the Transformer
to use in Vision problems. The initial research in this field
was carried out by Alex et al., who proposed the Vision
Transformer known as ViT [27], which replaces the conven-
tional CNN with the Transformer. ViT is directly trained on
the medium-sized flattened patches with large-scale data pre-
training.

Since introducing the first work, many Transformer based
architectures have been proposed for the Vision tasks such
as in image recognition [28], object detection [29], [30],
segmentation [31], [32], and action recognition [33], [34].
In addition, Transformer based models have been studied
for low-level vision problems such as super resolution
[35], [36], image colorization [37], denoising [38], and image
restoration [39]. For instance, DETR [29] is a transformer
network designed for object detection, which can predict a
set of objects and model their relationships. SwinIR [35],
introduced by Jingyun et al. for low-level vision tasks, uses
Swin Transformer [30] by applying self-attention within local
image regions to solve the low-level vision problems.
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C. GUIDANCE SUPER RESOLUTION
Guidance Super Resolution (GSR) techniques have been used
to upsample images from a different domain to generate
more accurate SR images by using the information of
other domain images (e.g., visible images), while having
such high-resolution images is expensive (e.g., thermal
images). Traditional GSR approaches, such as joint bilateral
upsampling [40] and rapid bilateral filtering [41], have
already been studied for this task; however, these methods
frequently over-smooth the reconstructed image. Recently,
by advancing deep learning methods, several approaches
have been introduced to boost the performance of the
GSR task [42]. GSR techniques have been studied in
different super resolution domains, such as depth-map SR,
infrared SR, thermal SR, hyperspectral SR, and some others.
MSG-Net [43], employs CNNs to accomplish guidance super
resolution, which is the first CNN model that attempts to
upsample depth images under multi-scale guidance from the
corresponding HR visible images.

Most GSR methods are based on the Siamese algorithm,
which lets the network accept two inputs and perform simul-
taneous feature extraction from both spectral images and
visible images at the same time. These images are then fused
at different levels of the network and upsampled to provide
high-resolution images. Furthermore, GSR approaches with
similar structures used in guidance hyperspectral SRmethods
include [44], [45]. Also, some models were proposed for
guidance infrared SR such as [46], [47]. Feras et al. [13]
propose a multimodal sensor fusion model to enhance the
thermal images with help of RGB images. Riccardo et al. [48]
propose an alternative interpretation of guided super reso-
lution, where the roles of the source and guide images are
swapped. Honey et al. [42] propose a network for GSR from
low-resolution thermal images that do not require pixel-to-
pixel alignment between the thermal and the guide image.
Moreover, some approaches for cross-modal guidance super
resolution extract edges from the visible images in order
to obtain high-frequency features. The use of edge-based
guiding facilitates the reconstruction of higher-frequency
features such as [49], [50]. Despite that the aforementioned
approaches achieve reasonable performance, these methods
are limited to a fixed scale factor and not ideal for real-world
applications due to the number of network parameters and
their performance. Hence, in this paper, we propose a novel
dual stream Transformer based network for GSR, which
archives remarkable performance with a completely new
design for an upsampling module to be able to reconstruct SR
images in any arbitrary size while reminding computationally
efficient.

III. PROPOSED METHOD
In this section, the overall network architecture of the
proposed TnTViT-G is described. Following that, more
information about the Dual Attention layer is provided.
TnTViT is designed for Single Image Super Resolution and

TnTViT-G is a siamese-based network of TnTViT, which
designs for Guidance Super Resolution.

A. OVERALL PIPELINE
The main objective of the proposed model is to design an effi-
cient Transformer-based network for Guidance Super Reso-
lution that is capable of producing fine details high-quality
images with the help of the guided images (e.g., visible
images) to boost the performance of the network while
staying computationally low. Thus, we employ the original
Transformer structure but modify it in such a way that
the model achieves a considerable performance advantage
over existing CNN and Transformer networks. The overall
architecture of the TnTViT-G is illustrated in Fig. 2.
It consists of two streams to extract the features of LR
infrared input images and HR visible images. In particular,
the proposed TnTViT-G consists of three modules: Shallow
Feature Extraction (SFE), Dense Feature Extraction (DFE),
and Multi-Level Reconstruction Modules. We defined I IRLR,
IVisHR, and I

IR
SR as the low-quality infrared, high-quality RGB

inputs, and high-quality output of our network, respectively.

B. SHALLOW FEATURE EXTRACTION
Given the input images to the network, we apply a single
3 × 3 convolutional layer on each network’s streams to the
provided LR and HR visible inputs in order to map these
images space to a higher dimensional feature space and
improve the performance of the network [51]. Therefore,
we extract the shallow features as follows:

FIR0 = Conv3×3(I IRLR),F
Vis
0 = Conv3×3(IVisHR), (1)

where F IR0 (.) and FVis0 (.) denotes the output of shallow feature
extraction on both infrared and visible images.

C. DENSE FEATURE EXTRACTION
After mapping the inputs to a higher dimensional feature
space, the features pass through the Dense Feature Extraction
FDFE to encode the information in order to understand
the context of the sequences. The feature encoders of the
proposed approach (i.e, Dense Feature Extraction) is a
Transformer based network, which shares between both input
images (I IRLR and IVisHR) to keep the network computationally
efficient. However, each stream receives the same patch of
the input image with different sizes since LR images are
relatively smaller than visible images. Particularly, Dense
Feature Extraction design by using several Transformer
blocks to extract abstract features and spotlights the high-
level information. Each Transformer block consists of several
Transformer layers and a 1 × 1 Conv layer with the benefit
of cascade connections to transfer the information from the
previous stage to the current stage and help the gradient flow
of the network. Thus, we extract the feature as follows:

FDFE = HDFE (F IR0 ;FVis0 ), (2)
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where HDFE (.) is Dense Feature Extraction with several
Transformer blocks which can be formulated as

Fi = Conv1×1(C[HDATB(Fi−1),Xi−1], i = 1, 2, . . . ,K , (3)

where HDATB(.) denotes the ith Dual Attention Transformer
Blocks. C stands for the concatenation operation between
the initial and output features of each DATB block. Conv
denotes the convolutional layer after concat operation within
each DATB. Using a convolutional layer in the Transformer
block, help to transfer inductive bias from the convolution
operation into the Transformer network and provide a more
solid foundation for the later aggregation with shallow
features.

After encoding the features through several DATB, the
output feature maps of each DATB stage are concatenated
together to highlight the positional information via the
GMFF module, which stands for Gated multi-layer percep-
tron (MLP) Feature Fusion, before reconstructing the SR
images. GMFF module is designed to generate a multi-stage
representation feature map of Transformer blocks. Later, the
feature map passes through a lightweight MLP network.
However, unlike to standard MLP network, the GMFF’s
MLP module is designed by using a 3 × 3 depthwise
Conv layer and gating mechanism technique to first, leak
the spatial information since highlighting such features is
important in SR tasks to achieve high performance. Second,
allowing useful information to pass through the network and
suppressing the less informative ones. The gating mechanism
is used by applying the element-wise product of two parallel
routes of linear transformation layer that one of which is
activated with the GELU. Thus, Gated MLP Feature Fusion
can be seen as follows:

FGMFF = MLP(GELU (Conv3×3(MLP(Fi)))) + F0, (4)

where FGMFF is the output of DFE with aggregation of the
initial features, which is later used by theMulti-Stage Feature
Fusion Module.

D. MULTI STAGE FEATURE FUSION MODULE
After encoding the information of both LR infrared image
I IRLR and HR visible image IVisHR with a dual stream shared
network, the LR features first scale up to the same spatial
size as the HR visible image before fusing the information
with a learnable bicubic upsampling that contains a conv layer
before it; later, the aggregated features of all the stages are
concatenating together to enhance the LR infrared images
before upsampling them to the desired output size.

FMSFF
= Conv1×1(C[HUP(F IRGMFF ),F

Vis
GMFF ,FFS1, . . . ,FFS4]),

(5)

where FMSFF (·) denotes the output of the multi-stage feature
fusion module of both TnTViT streams and the feature fusion
of each stage.

E. MULTI LEVEL RECONSTRUCTION MODULE
Later, to upsample the LR infrared image after fusing
the information, we propose a new inductive bias in
GSR architectures to generate SR images more accurately
with fewer artifacts compared with the other methods or
naive interpolation techniques. To do so, we first pass the
information through two-pixel shuffle layers and a conv layer
before each of them. Second, the upsampled features with
pixel shuffle layers feed to a learnable bicubic interpolation
to upscale the features to any arbitrary size. Later, the
information aggregated with the shallow features of the
HR-guided image. These features are also upscaled with
learnable bicubic interpolation.

ISR = H↑

Rec(HUP(F
IR
0 ) + FMSFF + HUP(ILR)), (6)

where HRec(·) and ISR denote the up-sampling module and
high-quality reconstructed image respectively. Hence, the
proposed module can learn how to refine the pixels more
correctly via different levels of upscaling to bring it closer to
its actual high-resolution counterpart and beyond. Extensive
experiments have been detailed in the ablation study to show
the efficiency of the proposed reconstruction module over
other approaches.

F. LOSS FUNCTION
To keep the consistency with previous works, we use L1 loss
as a cost function during training to optimize the parameters
of the proposed TnTViT-G.

L1(θ ) =
1
N

N∑
i=1

∥ISR − IHR∥1 , (7)

where ISR is obtained by taking a low-quality infrared image
as the input of our model and IHR is the corresponding ground
truth.

In the next subsections, we provide more details about our
Transformer layer.

G. DUAL ATTENTION LAYER
This section presents the proposed Dual Attention layer,
an architecture abstracted from the general multi-head Trans-
former layer [52] with revising the self-attention layer. As is
generally known, self-attention is critical to achieve excellent
performance in Transformer-based networks. However, self-
attention might be troublesome for a variety of reasons.
For example, the computational complexity of self-attention
grows quadratically with the number of tokens to mix. Also,
due to its nature, self-attention does not take into account the
local contextual information and treats the images as flattened
sequences that ignore the structure of the image. Thus,
we propose the Dual Attention layer to address the mentioned
limitations by constructing a global attention map at a lower
computational cost. The dual Attention layer creates a global
attention map by combining two local attention maps, which
are obtained in parallel by using a CNN-based Attention
Module and a Transformer self-attention layer. Unlike the
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FIGURE 3. Illustration of dual attention layer (DAL).

prior token mixer, Dual Attention is able to take into account
both long-range dependency and local contextual information
with less computing cost.

As shown in Fig 3, we design our Dual Attention such
that the channel information is distributed evenly across
both attention module branches (SpAM and SeAM). Both
attention branches get half of the input tensor from the
Norm layer tensor X to generate the local attention map
independently. The SeAM is a self-attention Transformer,
which first generates the query (Q), key (K), and value (V)
projections, enriched with the local context. Inspired by [39],
we apply SeAM only across the channels rather than
the spatial dimensions. Our SeAM uses only depth-wise
convolutions to emphasize the channel-wise spatial context
before computing feature covariance to produce the attention
map. Thus, Q, K , V are computed as:

Q = WQ
d Y ,K = WK

d Y ,V = WV
d Y , (8)

where W (·)
d is the 3 × 3 depth-wise convolution. Next,

query and key projections reshape in such a way that their
dot-product interaction generates a transposed-attention map.
Thus, the attention map generates the following:

Attention(Q,K ,V ) = Wd (V .Softmax(K .Q/α)) + X , (9)

where X is the input feature map and α is a learnable scaling
parameter that is used to regulate the magnitude of the dot
product of K and Q before applying the Softmax function.
Similar to previous works [35], [52], [53] we perform the
attention function for h times to learn separate attention maps
in parallel in our SeAM module.

The second branch of our Dual Attention layer is the
Spatial Attention Module (SpAM), which is an almost
parameter-free attention mechanism. SpAM receives the
other half of the input tensor to generate the local attention
map. The goal of SpAM module is to encode the spatial
information, which represents the importance of each pixel
in the input feature with a negotiable cost. Given half of the
input tensor information, the channels of the input tensor are
reduced by mean and max operations, of which the shape is
1×H×W . The obtained features are concatenated, then pass
through a dilated convolution layer with a kernel size of 3×3.
After, a sigmoid activation layer applies to the output feature
to generate the attention weights of shape 1×H ×W , which
are later multiplied with the input tensor to refined tensors of
shape C × H × W . Thus, the SpAM can be formulated as

follows:

X = Sigmoid(Conv3×3[FMean(X ),FMax(X )]) ∗ X , (10)

where FMean(·) and FMax(·) denotes for mean and max
operations. Later, both locally generated attention maps from
SpAM and SeAM are concatenated together to obtain a
unified global attention map with less computational cost.
Thus, the generated attention map contains both long-range
dependency and local context information with enrich of
spatial features.

Following that, a multi-layer perceptron (MLP) with two
fully connected layers and a GELU non-linearity activation
function between them is employed for further feature
modifications. The norm layer is also added before MLP, and
both modules contain the residual connection between them.
As a result, the entire procedure within our Dual Attention is
as follows:

X = (Norm(SpAM (X/2) + SeAM (X/2))) + X

Y = MLP(Norm(X )) + X (11)

where Norm(·) stands for normalization layer and Y for the
output feature map.

IV. EXPERIMENTAL RESULTS
A. SETTING
1) DATASETS
Two datasets have been used to perform the experiments,
namely M3FD [54] and RGB-NIR [55]. The first dataset is
M3FD, which newly released by [54]. The M3FD dataset
contains pairs of visible and thermal images. The dataset
was built with a synchronized system of one binocular
optical camera and one binocular thermal sensor to capture
corresponding two modality images. We use the M3FD
Fusion dataset, which consists of 300 aligned pair images
from different scenarios in daytime, night, and overcast. Also,
the dataset consists of images from different scenes, such as
road, campus, street, forest, and many others.

The second dataset is the RGB-NIR Scene [56]
dataset. The RGB-NIR Scene dataset contains aligned
pairs of 477 RGB and near-infrared images, divided into
9 categories such as country, field, forest, indoor, mountain,
old building, street, urban, and water. The images were
acquired by utilizing different exposures from customized
SLR cameras equipped with visible and near-infrared filters.

2) EVALUATION PROTOCOL
Twowidely used quantitativemetrics have been considered to
measure the performance of our TnTViT compared to other
approaches. We used the Peak Signal-to-Noise Ratio (PSNR)
and Structural Similarity Index Measure (SSIM) to measure
reconstructed SR image accuracy. PSNR assesses the image
by statistically calculating distortion levels between the
reconstructed and ground-truth images. SSIM measures the
structural similarity between two images based on luminance,
contrast, and structure, which has a value range between
[0-1]. Higher value, better for both PSNR and SSIM.
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TABLE 1. Average PSNR, SSIM comparisons with SOTA CNN- and Transformer-based methods with the same range of network parameters on the Bicubic
(BI) degradation for scale factors [×2,×4, ×8]. Best results are highlighted.

3) DEGRADATION MODELS
Degradationmodels have been created to replicate LR images
in order to demonstrate the effectiveness of our proposed
approach. The degradation model is bicubic downsampling
(BI), which simulates LR images with the scale factors
[×2, ×4, ×8] by applying bicubic downsampling to HR
images.

4) IMPLEMENTATION DETAILS
We randomly select 70%, 20%, and 10% of images of
each dataset for the training, validation, and test phases
respectively. In the training phase, we provide the image
patches as inputs with different sizes based on the size of each
dataset from LR images and corresponding RGB images. The
batch size has been set to 32 for the training. Horizontal
random flips and 90 degree rotation data augmentation were
applied to patches of images. Adam optimizer has been used
with the initial learning rate 10−3. L1 is used as a loss function
to optimize the model and the network has been trained for
150K iterations. Also, the configurations of our transformer
encoder are as follows: we use 4 Transformer blocks within

6 Transformer layers for each block, Embedding dimension
set to 64, and MLP ratio to 2 for all Transformer blocks.
TnTViT-G is developed using the PyTorch framework and
trained on a single NVIDIA RTX 3090 GPU to achieve its
performance.

B. COMPARISON WITH STATE-OF-THE-ART METHODS
In this section, we compare our proposed GSR (TnTViT-G)
and SISR (TnTViT) with other lightweight state-of-the-art
approaches on different datasets with different scale factors.

1) EXPERIMENTS ON BICUBIC DEGRADATION
Table 1 shows comparisons between the proposed approaches
(TnTViT and TnTViT-G) and SOTA CNN- and Transformer-
based models, CARN [21], SwinIR [35], PixTransform [48],
and UGSR [42] on the Bicubic (BI) degradation model
for scale factors [×2, ×4, ×8]. It is worth mentioning
that these networks contain almost the same number of
network parameters, allowing for a fair comparison. As can
be observed, when the proposed method is compared to
the approaches mentioned above, TnTViT achieves better
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FIGURE 4. Visual results for scale factors [×2, ×4, ×8] on M3FD an RGB-NIR datasets respectively.
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TABLE 2. Average PSNR results on RGB-NIR dataset for different upscaling methods with arbitrary scales. Best results are highlighted, second best
underlined.

results without the help of any guided image (visible image).
Furthermore, the proposed method (TnTViT-G) with the
guidance of visible image information achieves superior
results in almost most of the cases with major margins. This
demonstrates that TnTViT-G continually accumulates this
hierarchical information from different spectral images in
order to construct more robust representative features that
are well-focused on spatial context information since that
is the key to an accurate SR image. This claim is validated
by the derived SSIM scores, which are based on the visible
structures in the image and hence are more accurate. Figure 4
shows some qualitative results on M3FD and RGB-NIR
datasets on different scale factors for SOTA methods of
both SISR and GSR. As can be seen, TnTViT produces
images better than the existing method in the SISR since
the network is able to focus better on spatial information.
However, TnTViT-G is able to reconstruct high-frequency
details significantly better than all the existing methods and
generates more accurate SR infrared images, which are more
similar to ground truth images.

V. ABLATION STUDY
The proposedmodel is further studied in an extended ablation
investigation to demonstrate its efficiency. The ablation study
is intended to offer further information about the performance
of the proposed approach.

A. VISUALIZATION ON IMPACT OF GUIDED IMAGE
Figure 5 shows the average feature maps of each stage of our
Dense Feature Extraction module to investigate the impact of
the guidance image (i.e., visible image) when it is stacked up
with the LR feature map in each stage of DFE. Each average
feature map reflects the output of the Transformer block
at each stage in the Dense Feature Extraction module. The
average feature maps without guidance images are presented
on the top row, while those with guidance images are shown
on the bottom row.We can observe from the feature maps that

FIGURE 5. Average feature maps of TnTViT (top) and TnTViT-G (bottom)
on different stages of dense feature extraction.

TABLE 3. Avargae LPIPS comparison between proposed method and the
other methods on benchmark datasets for scale factors [×2, ×4]. The
lower is better.

using a guidance image helps the network acquire sharper
representations. Second, as the network focuses more on
high-level information, feature maps tend to include more
negative values at each stage, showing a greater influence of
suppressing the smooth area of the input image, which yields
a more accurate SR output.

B. INFLUENCE OF MULTI-LEVEL RECONSTRUCTION
MODULE
We investigate the advantages of using the proposed
Multi-Level Reconstruction Module, as well as the impact
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TABLE 4. Average running time (s), memory consumption (MB), number
of parameters (K), FLOPs (G), and PSNR comparison on RGB-NIR dataset
for ×4.

of two widely used upsampling and interpolation approaches
on reconstruction results. We carried out the following
experiments: i) Directly employing Pixel Shuffle layer to
produce images after fusing the information of both network’s
streams instead of our MLUP; ii) Using Pixel Shuffle layer
followed by a conv layer and bicubic interpolation to scale
the generated SR image to arbitrary scales. As can be seen
in Table 2, when the proposed MLUP module is used for
upscaling, superior results are obtained by a large margin
compared to other upsampling techniques. These studies
demonstrate that, opposite to common practice, the MLUP
significantly improves reconstruction accuracy since the
module is able to generate the SR images in multi-level with
the access of both direct and indirect shallow and abstract
features and yields consistent improvements on benchmark
datasets.

C. LEARNED PERCEPTUAL IMAGE PATCH SIMILARITY
In Table 3, we provide the Learned Perceptual Image Patch
Similarity (LPIPS) [57] evaluation metric to evaluate the
quality of the generated super-resolved images. LPIPS has
been demonstrated to correlate better with human perceptual
similarity of image quality than other evaluation metrics
(i.e., PSNR and SSIM). LPIPS is a deep-feature-based
evaluation metric that calculates the perceptual distance
between two images. As can be seen, the proposed model
achieves a lower value than other approaches (lower is better).
PixTransform [48] was excluded from the table since it could
not even outperform bicubic interpolation. This shows the
effectiveness of the proposed TnTViT-G to generate more
accurate super-resolved IR images with the help of HR visible
images.

D. MODEL COMPLEXITY AND INFERENCE TIME ANALYSIS
Table 4 compares the proposed TnTViT and TnTViT-G
architectures with existing CNN and Transformer-based
architecture approaches on RGB-NIR test images in terms of
network Parameters (M), FLOPs (G), Memory consumption
(MB), and Running Time (s). To provide a fair comparison,
all models are tested using the same setup, including their
public source code and default hyper-parameters, on an Intel
Core i9-10900K CPU and an NVIDIA RTX 3090 GPU.
As can be seen, TnTViT generates the SR images faster than
other Transformer methods. This comparison shows that our

TABLE 5. Summary of abbreviations.

proposed model properly balances performance and running
time requirements.

VI. CONCLUSION AND FUTURE WORK
This paper introduces TnTViT-G, a novel approach for
guidance super resolution based on Transformer architecture.
TnTViT-G is designed to accept two images of different
domains, extract the information from each domain (infrared
and corresponding visible image) with a separate stream,
and fuse them efficiently at different stages while remaining
memory efficient. We propose a dense feature extraction,
which contains both a transformer self-attention layer and
a convolutional attention module that can capture both
global dependency and local context information at a lower
computational cost while its well focusing on spatial features
compared to other Transformer models. Furthermore, unlike
other GSR methods, TnTViT-G is able to generate SR
images in arbitrary sizes, while other methods only generate
SR images in fixed sizes. Our experiments highlight that
a high-cost, low-resolution spectral image (IR image) can
be enhanced by a corresponding high-resolution, low-cost
visible image (visible image). We have demonstrated that
our approach achieves superior performance compared to
other lightweight state-of-the-art methods on all benchmark
datasets.

In the future, we will expand our approach for unsu-
pervised guidance super resolution when a paired dataset
is not available. To do so, we will attempt to change the
methodology of our proposed architecture to use a Generative
Adversarial Network. Finally, despite the fact that there has
been experimental proof that a low-cost channel can be
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TABLE 6. List of datasets used for multimodel guided image
super-resolution.

used to increase the resolution of an expensive channel, this
strategy relies on a well-registered paired dataset, which is
difficult to obtain since there can be misalignment between
multi-model sensors, and a simple feed-forward network
cannot deal with the mismatch problem. Thus, the image
alignment technique is required as a pre-process to match the
counterparts before encoding features of both domains and
generating a super-resolved image. Therefore, we will try to
integrate the feature alignment method into our forward pass
network to address the aforementioned problem.

APPENDIX
In Table 5, we provide a full list of the abbreviations and
acronyms, which have been used in this paper. Table 6
contains a list of datasets which has been used to carry out
the experiments of this study. We provide the number of HR
images, image formats, and category keywords.
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