toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author (up) Luis Chuquimarca, Renzo Pacheco, Paula Gonzalez, Boris Vintimilla & Sergio Velastin pdf  openurl
  Title Fruit defect detection using CNN models with real and virtual data. Type Conference Article
  Year 2023 Publication Proceedings of the International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2023) Lisbon, 19-21 Febrero 2023 Abbreviated Journal  
  Volume Issue Pages 272 - 279  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number cidis @ cidis @ Serial 203  
Permanent link to this record
 

 
Author (up) Luis Jacome-Galarza, Monica Villavicencio-Cabezas, Miguel Realpe-Robalino, Jose Benavides-Maldonado pdf  openurl
  Title Software Engineering and Distributed Computing in image processing intelligent systems: a systematic literature review. Type Conference Article
  Year 2021 Publication 19th LACCEI International Multi-Conference for Engineering, Education, and Technology Abbreviated Journal  
  Volume Issue Pages  
  Keywords processing, software engineering, deep learning, intelligent vision systems, cloud computing.  
  Abstract Deep learning is experiencing an upward technology trend that is revolutionizing intelligent systems in several domains, such as image and speech recognition, machine translation, social network filtering, and the like. By reviewing a total of 80 studies reported from 2016 to 2020, the present article evaluates the application of software engineering to the field

of intelligent image processing systems, it also offers insights about aspects related to distributed computing for this type of systems. Results indicate that several topics of software engineering are mostly applied when academics are involved in developing projects associated to this kind of intelligent systems. The findings provide evidences that Apache Spark is the most

utilized distributed computing framework for image processing. In addition, Tensorflow is a popular framework used to build convolutional neural networks, which are the prevailing deep learning algorithms used in intelligent image processing systems.

Also, among big cloud providers, Amazon Web Services is the preferred computing platform across the industry sectors, followed by Google cloud.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number cidis @ cidis @ Serial 154  
Permanent link to this record
 

 
Author (up) Lukas Danev; Marten Hamann; Nicolas Fricke; Tobias Hollarek; Dennys Paillacho pdf  openurl
  Title Development of animated facial expression to express emotions in a robot: RobotIcon. Type Conference Article
  Year 2017 Publication IEEE Ecuador Technical Chapter Meeting (ETCM) Abbreviated Journal  
  Volume 2017-January Issue Pages 1-6  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number gtsi @ user @ Serial 71  
Permanent link to this record
 

 
Author (up) M. Diaz; Dennys Paillacho; C. Angulo; O. Torres; J. Gonzálalez; J. Albo Canals pdf  url
openurl 
  Title A Week-long Study on Robot-Visitors Spatial Relationships during Guidance in a Sciences Museum Type Conference Article
  Year 2014 Publication ACM/IEEE International Conference on Human-Robot Interaction Abbreviated Journal  
  Volume Issue Pages 152-153  
  Keywords social human-robot interaction, spatial relationships, proxemics behavior  
  Abstract In order to observe spatial relationships in social human- robot interactions, a field trial was carried out within the CosmoCaixa Science Museum in Barcelona. The follow me episodes studied showed that the space configurations formed by guide and visitors walking together did not always fit the robot social affordances and navigation requirements to perform the guidance successfully, thus additional commu- nication prompts are considered to regulate effectively the walking together and follow me behaviors.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number cidis @ cidis @ Serial 29  
Permanent link to this record
 

 
Author (up) M. Oliveira; L. Seabra Lopes; G. Hyun Lim; S. Hamidreza Kasaei; Angel D. Sappa; A. Tomé pdf  url
openurl 
  Title Concurrent Learning of Visual Codebooks and Object Categories in Open- ended Domains Type Conference Article
  Year 2015 Publication Intelligent Robots and Systems (IROS), 2015 IEEE/RSJ International Conference on, Hamburg, Germany, 2015 Abbreviated Journal  
  Volume Issue Pages 2488 - 2495  
  Keywords Birds, Training, Legged locomotion, Visualization, Histograms, Object recognition, Gaussian mixture model  
  Abstract In open-ended domains, robots must continuously learn new object categories. When the training sets are created offline, it is not possible to ensure their representativeness with respect to the object categories and features the system will find when operating online. In the Bag of Words model, visual codebooks are usually constructed from training sets created offline. This might lead to non-discriminative visual words and, as a consequence, to poor recognition performance. This paper proposes a visual object recognition system which concurrently learns in an incremental and online fashion both the visual object category representations as well as the codebook words used to encode them. The codebook is defined using Gaussian Mixture Models which are updated using new object views. The approach contains similarities with the human visual object recognition system: evidence suggests that the development of recognition capabilities occurs on multiple levels and is sustained over large periods of time. Results show that the proposed system with concurrent learning of object categories and codebooks is capable of learning more categories, requiring less examples, and with similar accuracies, when compared to the classical Bag of Words approach using codebooks constructed offline.  
  Address  
  Corporate Author Thesis  
  Publisher IEEE Place of Publication Hamburg, Germany Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)  
  Notes Approved no  
  Call Number cidis @ cidis @ Serial 41  
Permanent link to this record
 

 
Author (up) Ma. Paz Velarde; Erika Perugachi; Dennis G. Romero; Ángel D. Sappa; Boris X. Vintimilla pdf  url
openurl 
  Title Análisis del movimiento de las extremidades superiores aplicado a la rehabilitación física de una persona usando técnicas de visión artificial. Type Journal Article
  Year 2015 Publication Revista Tecnológica ESPOL-RTE Abbreviated Journal  
  Volume Vol. 28 Issue Pages pp. 1-7  
  Keywords Rehabilitation; RGB-D Sensor; Computer Vision; Upper limb  
  Abstract Comúnmente durante la rehabilitación física, el diagnóstico dado por el especialista se basa en observaciones cualitativas que sugieren, en algunos casos, conclusiones subjetivas. El presente trabajo propone un enfoque cuantitativo, orientado a servir de ayuda a fisioterapeutas, a través de una herramienta interactiva y de bajo costo que permite medir los movimientos de miembros superiores. Estos movimientos son capturados por un sensor RGB-D y procesados mediante la metodología propuesta, dando como resultado una eficiente representación de movimientos, permitiendo la evaluación cuantitativa de movimientos de los miembros superiores.  
  Address  
  Corporate Author Thesis  
  Publisher ESPOL Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number cidis @ cidis @ Serial 39  
Permanent link to this record
 

 
Author (up) Marjorie Chalen; Boris X. Vintimilla pdf  openurl
  Title Towards Action Prediction Applying Deep Learning Type Journal Article
  Year 2019 Publication Latin American Conference on Computational Intelligence (LA-CCI); Guayaquil, Ecuador; 11-15 Noviembre 2019 Abbreviated Journal  
  Volume Issue Pages pp. 1-3  
  Keywords action prediction, early recognition, early detec- tion, action anticipation, cnn, deep learning, rnn, lstm.  
  Abstract Considering the incremental development future action prediction by video analysis task of computer vision where it is done based upon incomplete action executions. Deep learning is playing an important role in this task framework. Thus, this paper describes recently techniques and pertinent datasets utilized in human action prediction task.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number cidis @ cidis @ Serial 129  
Permanent link to this record
 

 
Author (up) Marta Diaz; Dennys Paillacho; Cecilio Angulo pdf  openurl
  Title Evaluating Group-Robot Interaction in Crowded Public Spaces: A Week-Long Exploratory Study in the Wild with a Humanoid Robot Guiding Visitors Through a Science Museum. Type Journal Article
  Year 2015 Publication International Journal of Humanoid Robotics Abbreviated Journal  
  Volume Vol. 12 Issue Pages  
  Keywords Group-robot interaction; robotic-guide; social navigation; space management; spatial formations; group walking behavior; crowd behavior  
  Abstract This paper describes an exploratory study on group interaction with a robot-guide in an open large-scale busy environment. For an entire week a humanoid robot was deployed in the popular Cosmocaixa Science Museum in Barcelona and guided hundreds of people through the museum facilities. The main goal of this experience is to study in the wild the episodes of the robot guiding visitors to a requested destination focusing on the group behavior during displacement. The walking behavior follow-me and the face to face communication in a populated environment are analyzed in terms of guide- visitors interaction, grouping patterns and spatial formations. Results from observational data show that the space configurations spontaneously formed by the robot guide and visitors walking together did not always meet the robot communicative and navigational requirements for successful guidance. Therefore additional verbal and nonverbal prompts must be considered to regulate effectively the walking together and follow-me behaviors. Finally, we discuss lessons learned and recommendations for robot’s spatial behavior in dense crowded scenarios.  
  Address  
  Corporate Author Thesis  
  Publisher International Journal of Humanoid Robotics Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number cidis @ cidis @ Serial 34  
Permanent link to this record
 

 
Author (up) Mehri, A, Ardakani, P.B., Sappa, A.D. pdf  openurl
  Title MPRNet: Multi-Path Residual Network for Lightweight Image Super Resolution. Type Conference Article
  Year 2021 Publication In IEEE Winter Conference on Applications of Computer Vision WACV 2021, enero 5-9, 2021 Abbreviated Journal  
  Volume Issue Pages 2703-2712  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number cidis @ cidis @ Serial 148  
Permanent link to this record
 

 
Author (up) Mehri, A, Ardakani, P.B., Sappa, A.D. pdf  openurl
  Title LiNet: A Lightweight Network for Image Super Resolution Type Conference Article
  Year 2021 Publication 25th International Conference on Pattern Recognition (ICPR), enero 10-15, 2021 Abbreviated Journal  
  Volume Issue Pages 7196-7202  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number cidis @ cidis @ Serial 149  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: