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Abstract—Land cover classification (LCC) is a process used to
categorize the earth’s surface into distinct land types. This clas-
sification is vital for environmental conservation, urban planning,
agricultural management, and climate change research, providing
essential data for sustainable decision making. The use of multi-
spectral imaging (MSI), which captures data beyond the visible
spectrum, has emerged as one of the most utilized image modal-
ities for addressing this task. In addition, semantic segmentation
techniques play a vital role in this domain, enabling the precise
delineation and labeling of land cover classes within imagery. The
integration of these three concepts has given rise to an intriguing
and ever-evolving research field, witnessing continuous advance-
ments aimed at enhancing multispectral semantic segmentation
(MSSS) methods for LCC. Given the dynamic nature of this field,
there is a need for a thorough examination of the latest trends and
advancements to understand its evolving landscape. Therefore, this
article presents a review of current aspects in the field of MSSS for
LCC, addressing the following key points: 1) prevalent datasets
and data acquisition methods; 2) preprocessing methods for man-
aging MSI data; 3) typical metrics and evaluation criteria used
for assessing performance of methods; 4) current techniques and
methodologies employed; and 5) spectral bands beyond the visible
spectrum commonly utilized. Through this analysis, our objective
is to provide valuable insights into the current state of MSSS for
LCC, contributing to the ongoing development and understanding
of this dynamic field while also providing perspectives for future
research directions.

Index Terms—Computer vision (CV), deep learning (DL),
image segmentation, land cover classification (LCC), multispectral
imaging (MSI), semantic segmentation, remote sensing, satellite
imagery.

I. INTRODUCTION

LAND cover classification (LCC) involves creating a
schematic representation of the earth’s surface [1]. This
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entails a physical and biological characterization of a specific
area, which may include various elements such as forested areas,
bodies of water, agricultural lands, and human constructions
like cities and roads [2]. This serves not only to describe the
distribution of elements on a surface but also to analyze the
interaction between biological, geological, climatic, and human
processes that have shaped this surface and how it has evolved
over time [3]. For these reasons, LCC is crucial for various
disciplines, such as ecology, geography, and climatology [4], as
it provides information for managing natural resources, planning
urban and rural development, and understanding changes in
ecosystems due to human activity or natural phenomena [5], [6].

Traditionally, LCC was based on direct observations and
manual analysis, which was laborious and prone to errors [7].
The introduction of artificial intelligence (AI) techniques, par-
ticularly computer vision (CV), has allowed for the development
of semiautomatic and automatic methods, such as semantic
segmentation, that achieve greater precision and efficiency than
their counterparts [8], [9]. These methods are capable of identify-
ing complex patterns and specific features, such as textures, and
colors in diverse environments [10], [11]. They are trained with
large quantities of labeled images [12], where each pixel of the
image has been previously classified by experts [13], and learn
from these examples to identify the distinctive characteristics of
each type of land cover. Once trained, the models can be applied
to new images, classifying each pixel according to the learned
categories, resulting in an accurate and detailed land cover map.

One of the most utilized techniques for LCC is semantic
segmentation. At its core, semantic segmentation involves parti-
tioning an image into several segments [14], aiming to simplify
its representation into something more meaningful and easier to
analyze [14], [15]. This process relies on a variety of algorithms
that analyze and classify each pixel of an image into a specific
category based on the object it belongs to. As a result, the
outcome is a segmented image where each pixel is tagged
with a label [16], thereby transforming raw visual input into
a structured and interpretable format.

While this technique has proven highly effective in LCC, it
faces challenges particularly because the aerial perspective used,
such as those from drones or satellites [17], covers large areas
densely packed with details. This makes it difficult to differ-
entiate between similar structures such as dense wooded areas
and croplands. Moreover, the resolution of these images can be
limited [18], hindering the precise identification of smaller or
subtle features in the terrain. In addition, the traditional images
used in this process are often of the red, green, and blue (RGB)
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type [16], [19], which represent the standard format for capturing
and displaying visual information. RGB images are favored for
their straightforwardness and the immediate availability of data
that they offer. However, there are scenarios where the conven-
tional RGB imagery may not suffice [20], [21]. These limitations
become apparent in applications requiring the detection of fea-
tures or details that are not readily distinguishable in the visible
spectrum. In such cases, the reliance solely on RGB images
can lead to inadequate or incomplete analyses [20], [22], [23],
prompting the exploration of alternative imaging techniques.

In this scenario, multispectral imagery (MSI) stands out,
offering an expansive and nuanced view of the terrestrial surface.
MSI involves the collection of image data at specific wavelengths
across the electromagnetic spectrum, including both the visible
light range and beyond, into infrared, near-infrared (NIR), red
edge (RE), and sometimes ultraviolet ranges [24]. This improves
the ability to differentiate various land features, given the sensi-
tivity of specific spectral bands to different aspects of the terrain,
allowing the accurate identification of particular objects and
structures [25]. For instance, the NIR band’s responsiveness
to vegetation health significantly aids in pinpointing areas of
vigorous vegetation, water stress, or the seasonal variation in
plant growth [26]. Similarly, the mid-infrared band is adept at
detecting soil composition changes or identifying unique sub-
stances, such as asphalt in urban settings [27], [28]. In addition,
the short-wave infrared (SWIR) serves to identify minerals,
analyze vegetation, and evaluate water content [29], [30].

The integration of semantic segmentation with MSI heralds a
significant leap forward in LCC [31]. By leveraging the detailed
spectral information provided by MSI, semantic segmentation
algorithms gain the capability to discern and categorize land
features with unprecedented accuracy [23]. This synergy allows
for the identification of subtle differences in the terrain that
RGB imagery alone cannot capture [32]. This not only mitigates
the challenges posed by the limitations of RGB images but
also significantly expands the potential for comprehensive envi-
ronmental analysis [31]. Consequently, the combined approach
of multispectral semantic segmentation (MSSS) opens up new
avenues for more detailed and accurate land cover mapping,
facilitating a deeper understanding of land use patterns and
the spatial dynamics of various cover types, supporting diverse
applications in planning, development, and conservation efforts.

Based on the above, this work endeavors to explore the
landscape of MSSS in LCC, particularly emphasizing the latest
contributions over recent years. The main objective of this work
is to compile a comprehensive overview of the state of research,
identifying the range of methodologies, applications, and other
aspects that characterize the use of MSSS for LCC. Through
this effort, we intend to contribute to the ongoing development
in the field, providing insights into its development and future
directions. Consequently, we hope to illuminate the potentialities
and challenges, fostering further exploration and innovation in
this domain.

II. RELATED WORK

Given the particular relevance of LCC using MSI images,
several reviews have been conducted in the literature that analyze

various aspects related to our area of study. These reviews
provide valuable insights and highlight different methodologies
and approaches that have been employed over the years. Hossain
and Chen [33] conducted a review on geographic object-based
image analysis (GEOBIA) techniques using remote sensing
images. They explored various segmentation methods, detailing
their application to GEOBIA, and provided an in-depth analysis
of each technique’s conceptual framework, along with their
respective advantages and limitations. In addition, their review
included a summary of the available tools and software packages
used for segmentation. A significant challenge they identified
in image segmentation is the selection of optimal parameters
and algorithms that can create image objects corresponding to
meaningful geographic entities. Furthermore, they noted an in-
creased use of imagery beyond the traditional RGB, with several
reviewed works incorporating synthetic aperture radar (SAR),
panchromatic, and nonvisible channels such as NIR. Alem and
Kumar [34] conducted a review focusing on deep learning (DL)
methods used for land cover and land use classification. Their
review highlights that convolutional neural networks (CNNs) are
the preferred techniques for this task. However, they also identify
the use of recurrent neural networks (RNNs) and generative
adversarial networks (GANs) in developing frameworks. The
review emphasizes that the most commonly used images for
these tasks are from remote sensing, featuring several notable
datasets. While some of these datasets are in RGB format, others
are derived from satellites like Landsat, which provide multi-
spectral (MS) capabilities. Thasveen and Suresh [35] conducted
a review on land use and land cover methods. In their review,
they compile various approaches, including statistical methods,
machine learning (ML), and DL techniques. They highlight the
advancements and increased availability of remote sensing MS
data thanks to different satellite programs, such as Landsat,
IKONOS, SPOT, and GeoEye. Regarding methods, despite the
consistent use of CNNs and artificial neural networks, there is
also a significant use of ML methods such as support vector
machines (SVMs) and random forests (RFs). Digra et al. [36]
conducted a review on land cover and land use classification
using remote sensing images and DL. Their review empha-
sizes that, while DL methods are efficient and can manage
the complexities of land cover and land use classification, the
continuous increase in available data has introduced new layers
of complexity that only DL can effectively address. In light of
this, they highlight the use of CNN architectures, such as ResNet,
DenseNet, and GoogleNet, for this task. They also mention var-
ious data sources, particularly satellites like Landsat, Sentinel,
and MODIS, which provide MS data. In addition, the review
identifies commonly used software tools for this task. Despite the
valuable insights provided by these reviews, there remains a need
for a comprehensive analysis that focuses specifically on MSI for
LCC. While previous reviews have addressed various techniques
and advancements, our review uniquely centers on summarizing
current contributions and methodologies specific to MSSS. By
providing an in-depth overview of the latest developments and
applications in this field, we aim to offer a valuable resource that
enhances understanding and supports further advancements in
LCC using MS data.
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III. METHODS

To conduct this review, we adhered to the Preferred Report-
ing Items for Systematic Reviews and Meta-Analyses state-
ments [37], the most commonly used reporting guidelines for
systematic reviews. Building on this foundation, we have for-
mulated specific research questions and established a set of
inclusion and exclusion criteria to guide our selection process.
The methodology employed in conducting this review will be
outlined in the following sections.

A. Research Questions

This systematic review aims to thoroughly investigate the
field of MSSS for LCC by addressing the following research
questions.

Q1 What are the most commonly used datasets and data
acquisition methods in the field of MSSS for LCC?

Q2 What specific preprocessing methods or techniques are
employed to handle MSI data?

Q3 Which metrics and evaluation criteria are most commonly
used in assessing the performance of techniques and
methods?

Q4 What techniques and methodologies are primarily used
in MSSS for LCC?

Q5 Which spectral bands beyond the visible spectrum are
most commonly utilized in MSSS for LCC?

B. Eligibility Criteria

We adhered to specific inclusion and exclusion criteria to
ensure the relevance and quality of the articles selected for
review. For inclusion, articles were considered eligible if they
satisfied the following conditions: (IC1) empirical research fo-
cused specifically on MSSS for LCC; (IC2) research published
between 2020 and 2024 in peer-reviewed journals or presented
at significant conferences; and (IC3) research utilizing MSI up
to 36 bands. On the other hand, exclusion criteria were applied
to articles that failed to meet any of the following requirements:
(EC1) review articles, meta-analyses, editorials, commentaries,
and other forms of secondary research; and (EC2) non-English
research articles.

C. Search Strategy

To gather the articles for our review, we crafted a query that
contains a selection of keywords that cover the study domain.
The search string used was: (“semantic segmentation” OR “seg-
mentation” OR “image segmentation”) AND (“multispectral”
OR “multispectral imaging” OR “multispectral imagery”) AND
(“land cover” OR “land cover mapping” OR “land cover classifi-
cation” OR “land cover analysis”). This query was applied to the
metadata of articles, including titles, abstracts, and keywords,
to ensure the comprehensive coverage of pertinent studies. In
addition, we applied filters to refine the search results further,
ensuring the retrieval of the most relevant articles. We utilized a
variety of databases and search engines for our literature search,

Fig. 1. Difference between land cover and land use.

including IEEE Xplore,1 ScienceDirect,2 Springer,3 ACM,4 and
Taylor & Francis.5 We opted not to include other sources such
as trial registers or grey literature.

IV. BRIEF FUNDAMENTALS

In this section, we present a concise overview of the funda-
mental concepts underpinning our field of study: LCC, semantic
segmentation, and MSI. This primer is designed to establish a
shared understanding of the key principles and terminology that
are crucial for exploring the advanced methodologies discussed
later in this review.

A. Land Cover Classification

It is worth remembering that LCC refers to the process of
categorizing the earth’s surface into distinct classes. This process
involves examining an image to identify different objects and
assigning them to specific categories. This transforms complex
visual information into clearly defined segments, generating an
organized map that describes the distribution of different types
of land cover. In this field, it is important to differentiate between
land cover and land use, two terms that are often confused.
While both terms relate to the earth’s surface, each captures
a distinct dimension. As shown in Fig. 1, land cover refers
to the physical covering of the land, describing the natural
and artificial elements that compose it [2], [38]. This includes
vegetation, artificial surfaces, water bodies, and barren lands. In
contrast, land use focuses on human usage of the land [39], [40],
highlighting the activities and functions that take place on it [38],
such as agriculture, recreation, and commerce. In summary, land
cover and land use are interrelated but distinct concepts that
provide complementary perspectives on the landscape.

1[Online]. Available: https://ieeexplore.ieee.org
2[Online]. Available: www.sciencedirect.com
3[Online]. Available: www.link.springer.com
4[Online]. Available: https://dl.acm.org/
5[Online]. Available: https://www.tandfonline.com

https://ieeexplore.ieee.org
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Fig. 2. Example of an LCC process of an area using a reference system.

Fig. 3. Upper level categories of the LCCS proposed by the FAO.

Prior to the categorization of any scene, establishing the
classes is one of the initial steps in LCC [41]. While it is
possible for researchers to define their categories based on the
specific needs of their study or regional characteristics, there are
structured systems that provide guidelines for defining classes
and levels of classification. These standards ensure coherence
and are particularly useful for comparative analyses across vari-
ous locations or different time periods, maintaining consistency
across studies. Fig. 2 shows an example of how a reference
classification system is used for mapping an area. One of the
most renowned guides is the Land Cover Classification System
(LCCS)6 established by the Food and Agriculture Organization
(FAO). This system proposes a hierarchical classification that
starts with broad levels, which then lead to more specific sub-
divisions [42], as seen in Fig. 3. This structure allows users
to accurately identify and describe a wide range of land cover
types, from forests and grasslands to urban areas, croplands,
and bare surfaces. This broad spectrum greatly facilitates the
conceptualization of studies where the proper establishment of
classes is not trivial [42], [43]. Typically, many studies utilize

6[Online]. Available: https://www.fao.org/land-water/land/land-governance/
land-resources-planning-toolbox/category/details/en/c/1036361/

this classification system, adopting specific levels tailored to
their unique case requirements.

Within the methods applied for LCC, these can broadly be
divided into two categories: pixel-based image analysis (PBIA)
and object-based image analysis (OBIA) [44], [45]. The PBIA
approach classifies each pixel individually, based on its spectral
signature, without considering the context or spatial relation-
ships with surrounding pixels [45], [46]. This can be effective in
scenarios where there is high homogeneity within the land cover
classes. However, this technique may face limitations in areas
where land cover types exhibit similar spectral characteristics
or in environments where pixel mixing is frequent [47]. On the
other hand, OBIA groups pixels into larger objects based on
similarity and other criteria, such as texture, shape, and prox-
imity. This involves an initial segmentation step where pixels
are grouped into larger objects [48], which are then classified
as units [45]. In addition, OBIA can utilize segmentations at
multiple scales [48], [49], [50], capturing various levels of detail.
This approach allows the method to effectively identify broad
homogeneous areas as well as finer more heterogeneous regions.
This results in a more contextual and detailed interpretation,
proving especially useful in heterogeneous landscapes where
different types of land cover interact in complex ways [48]. Fig. 4
shows the comparison between PBIA and OBIA graphically.

With the technological advancements in the field of AI,
DL techniques have increasingly been incorporated into LCC
approaches. Specifically, methods such as semantic segmenta-
tion have become pivotal in enhancing the accuracy and effi-
ciency of classifying land cover. These models leverage com-
plex computational algorithms to analyze and interpret the vast
amounts of image data more effectively than traditional methods.
This evolution marks a significant shift toward more sophisti-
cated automated analysis in environmental monitoring and land
management.

B. Semantic Segmentation

Image segmentation is one of the fundamental tasks in CV.
It is defined as the process of partitioning a digital image
into multiple segments, transforming it into something that is
more meaningful and easier to analyze [51]. This involves a
pixel-level analysis where each pixel in an image is classified or
assigned to a specific category [52]. This results in the formation
of clusters where all pixels in the same group share certain
characteristics [53]. This technique not only allows for locating
and identifying a particular object but also provides information
about the size, shape, and even orientation [54], [55], making it
more comprehensive than mere classification and detection.

Broadly, image segmentation can be categorized into two
types: instance segmentation and semantic segmentation [56].
Semantic segmentation involves the process of assigning a label
to every pixel in an image such that pixels that are part of the same
object type share the same label [51]. This type of segmentation
does not differentiate between different instances of the same
object [57]; instead, it aims to categorize all pixels of similar
types into the same segment across the whole image. It is par-
ticularly useful for understanding the layout of an environment

https://www.fao.org/land-water/land/land-governance/land-resources-planning-toolbox/category/details/en/c/1036361/
https://www.fao.org/land-water/land/land-governance/land-resources-planning-toolbox/category/details/en/c/1036361/
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Fig. 4. Comparison between PBIA and OBIA approaches.

Fig. 5. Comparison between different CV tasks.

by labeling areas such as roads, buildings, cars, and trees [58],
which helps in tasks such as autonomous driving and LCC.
Instance segmentation goes a step further by not only segmenting
the image into defined categories but also distinguishing between
different instances of the same category [59], [60]. For example,
if there are several cars in an image, instance segmentation will
identify and separate each specific car rather than marking them
all as one category. This is especially beneficial in scenarios
where the identification of individual items is required, such as
in object tracking and counting [61]. Both types of segmentation
provide valuable insights for analyzing complex images, but
their application depends on the specific needs of the task at
hand, whether understanding a scene as a whole (semantic) or
identifying and differentiating individual elements within the
scene (instance). Fig. 5 shows the difference between this tasks.

Regarding segmentation methods, traditional techniques,
such as thresholding, region-based segmentation, and edge de-
tection, have laid the groundwork for this field [62]. Thresh-
olding simplifies images to binary levels based on pixel val-
ues [62], [63]. Region-based algorithms group pixels into larger
areas based on similar statistical characteristics like color and

texture, utilizing techniques like region growing and split-and-
merge [64]. Edge detection identifies object boundaries by de-
tecting discontinuities in pixel intensity [65], using operators
such as Sobel or Canny [65], [66]. As the field of CV has
advanced, segmentation methods have evolved from simple
traditional techniques to more complex approaches based on ML
and DL [16]. Following initial techniques, such as thresholding,
ML methods began to play a crucial role in improving image
segmentation. Techniques such as SVM [67], K-means, decision
tree [68], and RF [69] are representative of this group [70]. These
methods use manually extracted features to train models capable
of discerning between different types of segments based on pat-
terns learned from the data [71], [72]. These approaches provide
better management of variations and complexities in images
than traditional methods, facilitating more precise segmentation
tailored to the specific characteristics of each context.

The introduction of DL and neural networks has further rev-
olutionized the field of semantic segmentation [73]. DL models
offer significant advantages over ML techniques as they are
capable of automatically learning hierarchical feature represen-
tations from large amounts of data [74], thereby eliminating the
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Fig. 6. Example of the electromagnetic spectrum and its divisions into spectral bands. Band ranges can vary with the imaging equipment used, making this figure
a general depiction for segmenting the spectrum in various applications, not an exact standard for all imaging systems.

need for manual feature extraction [75], which is often labor-
intensive and prone to errors. Specifically, CNNs are particularly
well suited for image processing tasks [76]. They utilize layers
of convolutions, which apply filters to an input image to create
feature maps that summarize the presence of specific features in
the input [77], [78]. This way, early layers might detect edges
or textures, while deeper layers might identify more complex
patterns such as parts of objects [77], [79], [80]. This hierarchical
approach to learning features makes CNNs incredibly effective
for tasks that require understanding of visual data [81], as
each layer builds on the information processed by the previous
one, leading to a detailed and comprehensive understanding
of the image content. These CNN approaches have proven to
be particularly effective in handling complex image segmen-
tation tasks [73], demonstrating substantial improvements in
accuracy, generalization, and the ability to handle diverse and
challenging environments. Within this group, architectures such
as UNet [82], fully convolutional network [83], and SegNet [84]
are some of the pioneers in demonstrating the capability of CNN
methods, becoming some of the most recognized and used in
semantic image segmentation [62], [85].

C. Multispectral Imaging

MSI involves capturing data at multiple wavelengths across
the electromagnetic spectrum, beyond the narrow band of visible
light [24], [86]. This method collects information from various
spectral bands, not only including the standard RGB that human
eyes perceive but also extending into invisible wavelengths [86].
Each spectral band is capable of detecting unique attributes
of surface materials, revealing details that are not discernible
through conventional imaging.

The capture of MSI requires specialized devices and sen-
sors designed to detect and record data across various wave-
lengths [87]. These sensors are often part of sophisticated
imaging systems that can include stand-alone cameras, satellite-
mounted sensors, and airborne systems [88], each tailored for
specific applications. Stand-alone MS cameras are commonly
used in handheld or drone-mounted configurations, offering
flexibility for ground-level or aerial surveys [89], [90]. Satel-
lite sensors provide broader coverage, making them ideal for
environmental monitoring and geographic mapping on a global
scale [91], [92]. In addition, airborne systems, mounted on
aircraft, bridge the gap between satellite- and ground-based

Fig. 7. Comparative diagram between MSI and HSI.

observations by providing detailed imagery over large areas,
which is essential for precision agriculture, forestry, and land
management [86].

In this regard, it is important to recognize and understand the
differences between MS and hyperspectral images, two types of
similar images but with distinct capabilities and applications in
the capture and analysis of spectral data. As mentioned earlier,
MSI captures information in bands beyond the visible spec-
trum; however, these typically focus on broader ranges, wider
bandwidth, and finer resolution [93], making them especially
useful for general applications, such as agriculture, environmen-
tal monitoring, and cartography. Fig. 6 presents an illustrative
example of the electromagnetic spectrum and its divisions into
various spectral bands. On the other hand, hyperspectral imaging
(HSI) also captures data beyond the visible spectrum, but it
collects detailed information at an almost continuous level along
the spectrum with a narrow bandwidth [93], [94], as illustrated
in Fig. 7. This allows for a detailed characterization of each
point in the image [95]. This granularity in data collection
enables HSI to identify the subtleties of materials with high
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precision, which is useful in applications that require precise
identification of certain elements, such as in geology [96], and
detection of chemical pollutants [97]. However, this type of
imaging comes with its challenges. Unlike MSI, which, due to
the fewer number of bands, are easier to process and analyze, HSI
requires greater computational capacity and more sophisticated
processing techniques. Likewise, their capture demands more
sophisticated equipment that is often much more expensive than
that required to capture MSI [98], [99], which represents a
significant barrier in terms of initial investment and maintenance
for many research projects and commercial applications.

An important point to note is that there is no universally
accepted standard that precisely defines the boundary between
MSI and HSI in terms of the number of bands. While MSI is
typically limited to a few bands, HSI may contain hundreds
of spectral bands. The distinction is usually based more on
the application and analysis intended to be performed. Some
research [86] suggests that MSI contains three to seven spectral
bands, while HSI ranges from 10 to 100 bands. Others [100] state
that MSI data comprise between five and ten bands, while HSI
includes between 100 and 200. Meanwhile, the United States
Geological Survey (USGS)7 specifies that MSI can have up to 36
bands, whereas HSI can contain hundreds and even thousands.
Therefore, although no fixed limit is established, for a general
criterion, it can be stated that MSI contains up to a few tens
of bands, while HSI contains hundreds. For the purposes of this
review, the criterion established by the USGS will be considered.

In sum, MSI provides a valuable tool for earth observation and
analysis, combining an effective balance between spectral res-
olution, spatial coverage, and operational simplicity. Although
HSI offers greater depth in spectral analysis, the complexity
and costs associated with its use limit its applicability in many
contexts. For these reasons, this review will focus on MSI, capi-
talizing on its ability to deliver detailed and relevant information
without the technical and financial demands of HSI. The choice
of MSI enables broader access to remote sensing technology,
allowing more practical and economical implementation across
various fields of study.

In the context of MSI, spectral indices play a significant role
in the interpretation and analysis of captured data. These indices
are mathematical calculations made from specific spectral bands
of an image [101] and are used to identify and quantify particular
characteristics of the earth’s surface. For example, the Normal-
ized Difference Vegetation Index (NDVI) is one of the most
well known and is calculated using the red and NIR bands [102],
[103]. The NDVI is especially valuable for assessing the amount
and health of vegetation in a given area, providing crucial infor-
mation for agriculture, forest management, and environmental
monitoring [102], [104]. Another widely used index is the Nor-
malized Difference Water Index (NDWI), which is calculated
from the NIR and green bands [105]. The NDWI is particularly
useful for water resource management and flood detection, as
it highlights water-saturated areas, allowing a clear distinction
between aquatic and terrestrial zones [105], [106]. Including
spectral indices in the analysis of MSI allows researchers to fully

7[Online]. Available: https://www.usgs.gov/

leverage the unique properties of different bands of the spectrum,
facilitating a more detailed and specific interpretation of the
data. In addition to the NDVI and NDWI, there are numerous
other spectral indices that can be derived from the available
bands in MSI. Each of these indices is designed to highlight
specific features and address particular needs in various fields
of study, such as mineralogy, soil quality, and the identification
of urban areas. Table I lists some of the most commonly used
indices.

In addition to spectral indices, MSI can include or be com-
plemented with digital surface models (DSMs) and normalized
digital surface models (nDSMs). These models are crucial for
providing 3-D information about the earth’s surface and its
morphology. A DSM represents the elevation of all objects on
the ground [112], including vegetation, buildings, and other
structures, while the nDSM is generated by subtracting the
elevation of the natural terrain, obtained from a digital terrain
model [113], resulting in a model that exclusively reflects the
height of features above the natural surface, such as buildings
and trees. Incorporating these models into the analysis of MSI
allows for a deeper and more detailed understanding of the
environment being analyzed. For example, DSM and nDSM are
widely used in urban planning, environmental impact studies,
and natural resource management [112], [114], as they provide
a precise view of the spatial distribution and height of objects
within a given region. This information is invaluable for tasks
such as planning new infrastructures, and managing vegetation
in urban and rural areas. Moreover, combining spectral indices
with altimetric data from DSM and nDSM can enrich land cover
analysis, facilitating more precise segmentation and much more
detailed and comprehensive studies.

V. DATASETS AND IMAGE ACQUISITION

In this section, we detail the datasets and image acquisition
methods commonly used in the field of MSSS for LCC identified
in this review. We explore the variety of data sources, the specific
spectral bands or range covered, and the techniques employed
to gather and prepare these datasets for effective analysis.

A. Satellite Imaging Services

In our review, a significant number of studies focus on
application-driven research and case studies. These works are
clearly distinct from those primarily aimed at developing or test-
ing new methodologies, and hence, the reliance on precompiled
benchmark datasets is noticeably less common. Instead, these
studies often require the acquisition of specific imagery tailored
to their unique research objectives.

In this context, satellite imaging services emerge as one of
the primary sources for obtaining such data. These services offer
the flexibility to provide images across a wide range of locations
and geographical conditions, diverse bands, and multitemporal
captures, making them invaluable tools for a broad array of appli-
cations. Given the frequent use of these satellite services for data
acquisition among the reviewed studies, the following details the
most utilized ones, addressing the different characteristics and
functionalities of these services.

https://www.usgs.gov/
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TABLE I
SOME COMMON SPECTRAL INDICES

TABLE II
OPERATIONAL FEATURES OF SENTINEL MISSIONS

1) Sentinel: The Sentinel8 satellites are a fleet of earth ob-
servation equipment developed by the European Space Agency
as part of the Copernicus program. Their purpose is to provide
a comprehensive and precise earth observation system, deliv-
ering crucial information on various aspects of the planet that
facilitates informed decision making regarding the environment.

A significant feature of the Sentinel project is its commitment
to open access, as all data collected by the Sentinel satellites are
available for free to anyone in need. In addition, it includes a
Hub,9 where various services for processing the data are acces-
sible. The backbone of the project is its fleet of satellites, with
currently six consolidated missions, each specifically oriented
toward monitoring certain aspects of the planet, as indicated

8[Online]. Available: https://sentinels.copernicus.eu/web/sentinel/home
9[Online]. Available: https://www.sentinel-hub.com/

below. In addition, Table II provides the operational features of
each Sentinel mission.

1) Sentinel-1: It primarily focuses on earth’s surface and
maritime surveillance, offering capabilities for monitoring
environmental changes and supporting disaster manage-
ment efforts.

2) Sentinel-2: It aims at monitoring land and vegetation,
providing critical data for agriculture, forest monitoring,
and environmental change detection.

3) Sentinel-3: It is dedicated to observing the earth’s surface,
oceans, and atmosphere, contributing vital information for
studying sea surface temperatures, ocean ecosystems, and
land vegetation.

4) Sentinel-4 and Sentinel-5: It is dedicated to atmospheric
monitoring; these missions measure trace gases such as
nitrogen dioxide, ozone, formaldehyde, sulfur dioxide,

https://sentinels.copernicus.eu/web/sentinel/home
https://www.sentinel-hub.com/
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TABLE III
DESCRIPTION OF SENTINEL-2 (A/B) BANDS

methane, and carbon monoxide, as well as aerosols af-
fecting air quality. Sentinel-4 is hosted on geostationary
satellites, while Sentinel-5 Precursor and Sentinel-5 are in
polar orbit.

5) Sentinel-6: It concentrates on studying the oceans, par-
ticularly monitoring sea level rise and offering data for
operational oceanography and climate research.

In this review, Sentinel-2 has been pinpointed as the primary
tool employed in the domain of semantic segmentation in MSI.
Its prominence is attributed to the distinctive capabilities of its
MS sensors, providing researchers with precise data essential for
in-depth environmental and terrestrial analysis. Its wide spectral
range facilitates the extraction of critical information regarding
vegetation health, moisture levels, and other vital environmental
indicators, making Sentinel-2 exceptionally suited for numer-
ous applications. Table III offers a detailed description of the
Sentinel-2 bands.

2) WorldView: WorldView10 is a series of commercial earth
observation satellites owned by Maxar Technologies. These
satellites are renowned for their capability to capture images
with high spatial and spectral resolution. For this reason, they
are a valuable source of data for various applications, including
cartography, urban planning, disaster management, defense and
intelligence, and environmental monitoring.

In our review, this satellite service was identified as one of the
most utilized options for data acquisition. The series consists
of four satellites, enhancing global monitoring and analysis
capabilities. Table IV presents the operational features of each
WorldView satellite, while Table V details the band configura-
tions for each satellite, providing comprehensive insights into
their data collection capabilities.

3) Landsat: The Landsat11 program is the world’s longest-
running earth satellite imaging service, beginning its operations
in 1972. It is a joint initiative between NASA and the USGS.
Similar to the Sentinel project, Landsat is committed to free
access to information, as all data collected by Landsat satellites
are freely available to anyone in need through the USGS Earth
Explorer portal.

10[Online]. Available: https://earth.esa.int/eogateway/missions/worldview
11[Online]. Available: https://landsat.gsfc.nasa.gov/

To date, nine Landsat satellites have been launched, with each
iteration enhancing and expanding its capabilities by integrating
more advanced sensors that provide valuable data for various ap-
plications. However, not all are currently active, as several have
completed their mission lifespan. Moreover, Landsat-6 never
entered service due to failing to reach orbit. For a comprehen-
sive understanding of each satellite’s characteristics, Table VI
provides the operational features, while Table VII specifically
details the spectral bands configuration of each satellite.

4) Gaofen: Gaofen12 satellites are part of the Chinese earth
observation initiative known as the China High-Resolution Earth
Observation System. This program aims to develop and deploy
a series of high-resolution observation satellites to provide data
for applications such as urban planning, road design, crop esti-
mation, disaster prevention and mitigation, and environmental
protection.

To date, multiple satellites within the Gaofen series have
been launched. However, the level of open access to their data
may vary depending on the specific satellite and the type of
data involved. While some Gaofen datasets are freely avail-
able to users under certain conditions, access to others may
require permissions or adherence to specific access policies.
Nonetheless, Gaofen offers a significant amount of accessible
data, which has made it a popular choice for data acquisition.
Specifically, the Gaofen-1 and Gaofen-2 series are usually the
most frequently utilized by researchers. These two versions are
particularly focused on the monitoring and observation of land,
providing critical data for terrestrial analysis. Table VIII displays
the operational features of these three versions, while Table IX
details their spectral bands.

5) Other Satellite Services: In addition to the satellite ser-
vices described previously, our review also identified a number
of studies that, albeit less frequently, utilize other satellite ser-
vices for data acquisition, specifically Pléiades,13 Ziyuan-3,14

and SPOT-6/7.15 These alternative services still play a vital
role in specific research contexts, offering unique dataset and
observation capabilities that complement the more commonly
used satellites. To provide an overview of these additional ser-
vices and their key characteristics, Table X summarizes the most
important features of each of these services.

B. Benchmark Datasets

Benchmark datasets are those that have been carefully curated
and are widely acknowledged within the scientific community.
Unlike data extracted for specific applications and generally
used only once, these datasets are designed to be reusable,
providing a standardized foundation for validation and com-
parison of results over time and across different studies. In the
field of semantic segmentation in MSI, benchmark datasets are
crucial for advancing the development of the field. They are
invaluable for researchers seeking to assess the effectiveness of

12[Online]. Available: https://chinaspacereport.wordpress.com/spacecraft/
gaofen/

13[Online]. Available: https://earth.esa.int/eogateway/missions/pleiades
14[Online]. Available: https://www.eoportal.org/satellite-missions/zy-3a
15[Online]. Available: https://www.eoportal.org/satellite-missions/spot-6-7

https://earth.esa.int/eogateway/missions/worldview
https://landsat.gsfc.nasa.gov/
https://chinaspacereport.wordpress.com/spacecraft/gaofen/
https://chinaspacereport.wordpress.com/spacecraft/gaofen/
https://earth.esa.int/eogateway/missions/pleiades
https://www.eoportal.org/satellite-missions/zy-3a
https://www.eoportal.org/satellite-missions/spot-6-7
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TABLE IV
OPERATIONAL FEATURES OF WORLDVIEW MISSIONS

TABLE V
DESCRIPTION OF WORLDVIEW BANDS

their approaches against the most advanced existing methods, as
they serve as a standard against which new methodologies can
be rigorously tested; this, in turn, allows for a clear measurement
of progress in the field.

In the following sections, we delve into detailed descriptions
of some of the most utilized benchmark datasets, as identified in
our literature review. These accounts aim to provide readers an

understanding of the specific features of each dataset, including
their spectral bands, categorization, and the nature of their
annotations, thereby providing insights into their applicability
for different research objectives. In addition, Table XI provides
a summary of every benchmark dataset found in this review.

1) ISPRS Vaihingen: Among the benchmark datasets identi-
fied in our review, the ISPRS Vaihingen16 dataset stands out as
the most frequently mentioned. Developed by the International
Society for Photogrammetry and Remote Sensing (ISPRS) for
semantic segmentation tasks focused on land covering, this
dataset features images of an urban environment, specifically
the town of Vaihingen, Germany. This town is characterized as
a relatively small community with many detached houses and
small multistory buildings.

The ISPRS Vaihingen dataset was captured using digital aerial
cameras and comprises 33 patches of different sizes. Each patch
contributes to a comprehensive true orthophoto (TOP) mosaic,
and the collection is augmented with DSMs generated via dense
image matching techniques. The ground sampling distance
(GSD) for both the TOP and the DSM is 9 cm. The dataset is
provided in TIFF format, featuring RG-NIR channels. It includes
pixel-level annotations for six categories: impervious surface,
building, low vegetation, tree, car, and clutter/background, as
shown in Fig. 8. These categories represent the six most common
classes encountered in land cover studies, encompassing both
natural and man-made elements crucial for accurate environ-
mental mapping and analysis.

2) ISPRS Potsdam: The second most recurrent dataset in our
review is the ISPRS Potsdam.17 Like the Vaihingen dataset,
this one was also developed by the ISPRS and captures the
essence of a German city, Potsdam, renowned for its historic
urban landscape featuring large building blocks, narrow streets,
and a dense settlement structure, as shown in Fig. 9.

The dataset shares several characteristics with the ISPRS
Vaihingen as the images were captured by digital aerial cameras,
are derived from a larger TOP, and include DSMs generated from
dense image matching techniques. However, the GSD for both

16[Online]. Available: https://www.isprs.org/education/benchmarks/Urban\
brkSemLab/2d-sem-label-vaihingen.aspx

17[Online]. Available: https://www.isprs.org/education/benchmarks/Urban\
brkSemLab/2d-sem-label-potsdam.aspx

https://www.isprs.org/education/benchmarks/UrbanSemLab/2d-sem-label-vaihingen.aspx
https://www.isprs.org/education/benchmarks/UrbanSemLab/2d-sem-label-vaihingen.aspx
https://www.isprs.org/education/benchmarks/Urban\brkSemLab/2d-sem-label-potsdam.aspx
https://www.isprs.org/education/benchmarks/Urban\brkSemLab/2d-sem-label-potsdam.aspx
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TABLE VI
OPERATIONAL FEATURES OF LANDSAT MISSIONS

TABLE VII
DESCRIPTION OF LANDSAT BANDS

Fig. 8. Sample RGB images from Vaihingen dataset (top) and their ground
truth (bottom).

Fig. 9. Sample RGB images from Potsdam dataset (top) and their ground truth
(bottom).

the TOP and the DSMs is 5 cm, differing from the 9 cm in Vaihin-
gen. The dataset comprises 38 patches of 6000 × 6000 pixels, is
available in TIFF format, and offers three channel compositions:
NIR-RG, RGB, and RGB-NIR, where each channel has an 8-bit
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TABLE VIII
OPERATIONAL FEATURES OF SENTINEL MISSIONS

TABLE IX
DESCRIPTION OF GAOFEN BANDS

Fig. 10. Sample RGB images from GID dataset (top) and their ground truth
(bottom).

spectral resolution. In addition, the images have been annotated
at the pixel level and contain the same categories as Vaihingen.

3) Gaofen Image Dataset: The Gaofen Image Dataset
(GID) [115] ranks as the third most frequently utilized bench-
mark in the studies comprising our review, which, like Potsdam
and Vaihingen, is also focused on land cover. The images within
GID were sourced through the GF-2 satellite service, covering
more than 60 different cities across China.

GID is divided into two parts: a large-scale classification set
and a fine LCC set. The large-scale classification set contains
150 images, while the fine classification set comprises 30 000
image patches, spanning a broad spectrum of geographical areas
and landscapes, as shown in Fig. 10. The images feature four MS
bands: RGB and NIR. The image size in the large-scale subset

Fig. 11. Sample images from RIT-18 dataset (top) and their ground truths
(bottom).

is 6800 × 7200, whereas the fine subset is multiscale, with sizes
of 56 × 56, 112 × 112, and 224 × 224. The large-scale subset
includes pixel-level annotations for five categories: built-up,
farmland, forest, meadow, and water; the fine classification sub-
set, meanwhile, provides annotations for 15 categories: paddy
field, irrigated land, dry cropland, garden land, arbor forest,
shrub land, natural meadow, artificial meadow, industrial land,
urban residential, rural residential, traffic land, river, lake, and
pond. The dataset is available for open access via the project’s
webpage.

4) RIT-18: Another dataset identified in our review is RIT-
18 [116], which is less frequently used compared to the datasets
mentioned earlier. Examples of this dataset are shown in Fig. 11.
This dataset was collected at Hamlin Beach State Park, located
in the state of New York, USA, using a Tetracam Micro-MCA6
mounted on a DJI-S1000 octocopter. It offers six spectral bands,
including RGB and three NIR bands covering a spectral range
from 490 to 900 nm. In addition, it features a GSD of 4.7 cm.
RIT-18 is annotated with 18 classes: road markings, tree, build-
ing, vehicle, person, lifeguard chair, picnic table, black panel,
white panel, orange pad, buoy, rocks, low vegetation, grass/lawn,
sand/beach, water (lake), water (pond), and asphalt. Notably,
the dataset exhibits a severely unbalanced class distribution,
posing a significant challenge for LCC methods. It comprises
three images: one for training (9393 × 5642), one for validation
(8833 × 6918), and one for testing (12 446 × 7654). The dataset
is provided in the form of NumPy arrays and is available for free
download and unrestricted use at GitHub.18 The dataset size is
approximately 3 GB.

18[Online]. Available: https://github.com/rmkemker/RIT-18

https://github.com/rmkemker/RIT-18
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TABLE X
FEATURES OF OTHER SATELLITE IMAGING SERVICES

TABLE XI
SUMMARY OF ALL MS BENCHMARK DATASETS FOR LAND COVER IDENTIFIED IN THIS REVIEW

5) SEN12MS: The SEN12MS dataset [117] comprises
180 662 patch triplets (541 986 total images) incorporating
Sentinel-1 dual-pol SAR, Sentinel-2 MS, and MODIS land
cover data. These patches are sampled from randomly selected
regions of interest across four meteorological seasons: winter
(1 December 2016 to 28 February 2017), spring (1 March 2017
to 30 May 2017), summer (1 June 2017 to 31 August 2017),
and fall (1 September 2017 to 30 November 2017). The dataset
offers patches, with each one standardized to a size of 256 ×
256 pixels in TIFF format. Moreover, it features a GSD of 10 m
and encompasses 13 spectral bands. This dataset was compiled
from diverse scenes distributed globally. For LCC purposes, it
typically adheres to a scheme of the International Geosphere
Biosphere Programme, consisting of ten classes: forest, shrub-
land, savanna, grassland, wetland, cropland, urban, snow, barren,
and water. SEN12MS is freely available for download from a
GitHub repository.19 Fig. 12 shows some examples from this
dataset.

6) Urban Semantic 3D: The Urban Semantic 3D (US3D)
dataset [118] encompasses satellite images, airborne LiDAR
data, and semantic labels across approximately 100 km2 in Jack-
sonville, FL, and Omaha, NE, USA. It features WorldView-3
panchromatic images along with eight-band visible and NIR
(VNIR) images. The GSD is about 35 cm for panchromatic
images and 1.3 m for VNIR images. The dataset comprises

19[Online]. Available: https://github.com/schmitt-muc/SEN12MS

Fig. 12. Sample images from SEN12MS dataset (top) and their ground truths
(bottom).

69 images with a resolution of 1024 × 1024 pixels, each
accompanied by corresponding semantic labels categorizing
ground, vegetation, building, water, and elevated road classes.
The dataset is available in TIFF format and can be accessed
via IEEE DataPort.20 Examples from the dataset are shown in
Fig. 13.

20[Online]. Available: https://ieee-dataport.org/open-access/data-fusion-
contest-2019-dfc2019

https://github.com/schmitt-muc/SEN12MS
https://ieee-dataport.org/open-access/data-fusion-contest-2019-dfc2019
https://ieee-dataport.org/open-access/data-fusion-contest-2019-dfc2019
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TABLE XII
SUMMARY OF UAV-CAPTURED DATASETS UTILIZED IN REVIEWED ARTICLES

Fig. 13. Sample images from US3D dataset (top) and their ground truths
(bottom).

C. Unmanned-Aerial-Vehicle-Captured Datasets

Unmanned aerial vehicle (UAV)-captured datasets are becom-
ing an integral part of research methodologies. Utilizing drones
offers a flexible and efficient means of data collection, allowing
researchers to access difficult terrains and capture data at fine
spatial resolutions. In this review, it was noted that a few studies
successfully employed UAV-captured datasets, taking advantage
of their ability to provide detailed and current data. For instance,
DJI drones, equipped with MS cameras, have been highlighted
as a popular choice among researchers for their versatility and
ease of integration. Further details on these observations can be
found in Table XII.

Nevertheless, despite their advantages, UAVs may not always
be suitable for all types of data acquisition, especially in the
context of large-scale land cover studies. Traditional land cover
datasets often require a broad aerial view to capture extensive
areas, a task that might be challenging for UAVs due to their
limited range and payload capacity. In addition, UAVs can face
restrictions in terms of flight duration and weather conditions,
which may affect their ability to gather data over large continu-
ous landscapes.

Regardless, UAVs are increasingly becoming a valuable tool
across various application fields, including LCC. Their capacity
to provide rapid detailed insights into specific locations makes
them indispensable for many modern research and practical
applications, complementing traditional methods and providing
critical data that would otherwise be difficult to obtain.

VI. PREPROCESSING METHODS

Although no new or particular preprocessing methods were
found in our review, it is important to highlight some common
techniques that remain essential. These preprocessing steps,
despite being well known, deserve description due to their signif-
icant impact on the quality and utility of the data used for MSSS
in LCC. This section will address these procedures, emphasizing
their importance and best practices in their application.

A. Image Correction and Enhancement

The first group of preprocessing techniques identified in this
review pertains to satellite-obtained images. These techniques
are particularly relevant in studies that utilize satellite imagery
for specific problems. This differs from the use of benchmark
datasets, as many of these are already prepared and relatively
ready for analysis, requiring little or no additional preprocessing.
In contrast, satellite images frequently require adjustments to
correct certain aspects before they can be processed and ana-
lyzed, given their nature.

The first preprocessing technique to discuss is atmospheric
correction. This is an important procedure in the preprocessing
of remote sensing images, employed to mitigate the effects of
the atmosphere that distort data captured from space [120]. This
distortion occurs because the earth’s atmosphere, composed of
various gases and particulate matter, can absorb and scatter
light reflected from the earth’s surface before it reaches satellite
sensors [121], [122], distorting the true appearance of the surface
in the images. These atmospheric phenomena alter reflectance
and can introduce artifacts such as haze or solar glare. The goal
of atmospheric correction is to determine the earth’s surface’s
actual reflectance from the apparent reflectance measured by the
sensor [123]. To achieve this, atmospheric correction methods
adjust the image’s reflectance values to more accurately reflect
the surface’s actual characteristics. This way, the visual quality
of the image is improved, and the intrusive component of the
atmosphere is eliminated. An example of the effect of this
technique can be observed in Fig. 14.

The next preprocessing technique for remote sensing images
is radiometric correction, also known as radiometric calibration.
This process ensures that the pixel values in images captured
from space accurately represent the true reflectance of the
earth’s surface [124]. During image capture, various factors
such as variations in sensor response, calibration errors of the
instrument [125], or electronic interferences can distort the
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Fig. 14. Comparative example of the effect of atmospheric correction on a
satellite image.

Fig. 15. Comparative example of the effect of radiometric correction on a
satellite image.

data [126]. These errors may manifest as incorrect pixel values,
which, for example, could cause images to appear overexposed
or underexposed [127], thus affecting the accuracy of spectral
measurements. Radiometric correction adjusts these values to
correct such distortions, aligning the data to reflect the actual ob-
served conditions. In other words, it achieves uniform intensity
values [124], typically accomplished by balancing histograms or
correcting imperfections present in the pixels [128]. Thus, this
process improves the visual quality and reliability of satellite
images, enabling a more precise interpretation of the terrain.
Fig. 15 shows an example of the application of this technique.

Moving forward, another important technique is orthorectifi-
cation. Occasionally, due to terrain topography, camera angle,
or the movement of the satellite or vehicle capturing the image,
distortions can occur in the alignment of images and their
pixels [129]. Orthorectification eliminates the geometric and
scale errors in images [130], ensuring that they are correctly
located geographically. This is done by transforming the image’s
central projection system into an orthogonal projection [131],
aiming to remove displacements caused by sensor movement
and terrain relief. As a result, each pixel is correctly aligned
with the actual geographic coordinates on the ground [132]. The
outcome of this process is an image with cartographic precision
and consistent planimetric scale. This is essential for the images
to be used for precise mapping, measuring actual distances, and

Fig. 16. Example of patching a large-scale image and its segmentation
mask/ground truth.

other geospatial applications where spatial location accuracy is
critical.

The last technique is normalization. This process aims to
standardize image data to ensure consistent conditions across
captures [133]. Typically, image capture involves various de-
vices and sensors, each with unique characteristics that can
result in differing image features. Normalization is crucial for
making disparate data comparable. It adjusts the images so that
pixel values are consistent across different lighting conditions,
capture angles, and sensors, eliminating variations that might
be caused by external factors rather than actual changes on the
observed surface [134]. This is especially vital in long-term
tracking studies, such as change detection, as it enables more
accurate and reliable analysis of changes over time and space.

B. Large-Scale Image Handling

In LCC tasks, images often come in large sizes, making
it challenging to use them directly with standard methods or
models. Processing these large-scale images in their entirety can
be computationally expensive and inefficient [135]. Therefore,
specific techniques are applied to handle these large images
effectively, ensuring that the analysis remains feasible and accu-
rate. This section focuses on the strategies employed to manage
and process large-scale images in LCC, identified in this review.

The typical approach for handling large-scale images is to
divide these into smaller patches [136], as shown in Fig. 16.
This technique, known as patching, allows for more efficient
and feasible management of large images for LCC methods
and models [137], [138]. By splitting the image into patches,
the computational load is reduced, as each smaller patch can
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Fig. 17. Example of patching a large-scale image with nonoverlapping and overlapping.

TABLE XIII
DIVISION OF THE TRAINING AND EVALUATION SETS OF THE POTSDAM AND

VAIHINGEN DATASETS ACCORDING TO THEIR IMAGE ID

be processed individually. This not only facilitates parallel pro-
cessing but also enables models to focus on specific areas of the
image, potentially improving segmentation and classification
accuracy. Patching is also beneficial for addressing memory
issues since large images can exceed the memory capacity of
processing systems [138]. Working with smaller patches ensures
that operations can be performed without exhausting available
resources.

Regarding the size of the patches, there is no fixed standard;
it depends on the desired level of detail and the specific re-
quirements of the model or technique being used. This variation
can occur whether a custom model is implemented with a
specific input size or preexisting methods are employed, as these
typically necessitate specific input requirements. Generally, the
ideal patch size should be small enough to facilitate efficient
processing but large enough to capture relevant landscape fea-
tures. Some common sizes used, according to what was found
in this review, are 512 × 512 and 256 × 256. Furthermore,
some datasets, such as Potsdam and Vaihingen, designate spe-
cific images for training and others for evaluation, as shown in
Table XIII, which are then patched accordingly.

Moreover, large-scale images can be patched with nonover-
lapping or overlapping, as shown in Fig. 17. Nonoverlapping
patches are created by dividing the image into segments using
a stride that matches the chosen patch size. This method is
straightforward and reduces computational load, but it can result
in the loss of important semantic information at the edges of the
patches. Alternatively, patches can be created with overlapping,
where adjacent patches share some pixels. This is achieved by
adjusting the stride to a size smaller than the chosen patch size.
This approach helps to reduce the loss of semantic information

Fig. 18. Graphical representation of image fusion methods.

during the patching process [139], ensuring that important fea-
tures are captured in multiple patches. Overlapping patches can
maintain the continuity and context of the data, which is crucial
for accurate segmentation and classification.

Finally, it is important to note that there are specific con-
siderations when patching MS images. This is due to the fact
that common tools and image processing software may not
be equipped to handle images with more than three channels.
Moreover, as discussed in the previous section, these types of
images usually come in formats such as TIFF rather than the
more common JPEG or PNG formats. Therefore, it is crucial
to ensure that when patching an MS image, the process is done
correctly and that the patches maintain all the spectral channels.
Failure to do so can result in the loss of critical information and
may adversely affect the analysis and classification outcomes.

C. Channel Fusion

Another common preprocessing step in LCC using MSI is
channel fusion. Channel fusion involves combining multiple
spectral bands to create a unified representation of the data [140],
which can be useful for analysis. There are different approaches
to channel fusion. As shown in Fig. 18, channels can be fused
early in the preprocessing stage, before any further main process-
ing is done, processed separately and fused later, or even fused at
an intermediate step [141], [142]. Here, to be consistent with the
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Fig. 19. Graphical visualization of the fusion of RGB channels with NIR using averaging on an image from the Potsdam dataset.

essence of preprocessing, we will refer to channel fusion as any
fusion step that can be performed before the main processing
steps.

In the area of LCC, channel fusion can involve combining
visible bands with nonvisible bands to generate a single repre-
sentation. For example, visible bands can be fused with NIR or
thermal bands to provide a more comprehensive view of the
landscape [143], [144], as shown in Fig. 19. Specific bands
can be fused to highlight particular features of interest, such
as vegetation or water bodies. In addition, other sources of
spectral information, such as DSMs or spectral indices like
NDVI, can be included in the fusion process [145], [146].
By integrating DSMs, the fused data can incorporate eleva-
tion information alongside spectral data, which enhances the
overall representation. Similarly, including spectral indices such
as NDVI allows the fusion process to incorporate metrics of
vegetation health [145], adding further detail and context. This
comprehensive integration of multiple data modalities can help
improve the interpretation of the terrain and achieve better
classification results.

There are various techniques available for channel fusion,
each presenting unique approaches and advantages. A widely
known method involves concatenation, where multiple channels
are merged by stacking them [147]. This approach preserves
the original values of each channel, creating a dataset that
incorporates all channels as distinct layers. It is straightforward
to implement and ensures that all the initial information from
each channel is maintained. Weighted sum is a variant, where
each channel is assigned a specific weight based on its impor-
tance or relevance [148]. The weighted values of corresponding
pixels are then summed to produce a single fused channel. An-
other common approach is averaging [149], where values from
corresponding pixels across multiple channels are averaged to
generate a unified channel. This method decreases data volume
and noise while emphasizing shared features among channels.
Weighted averaging is a variant, assigning weights to channels
based on their significance.

Dimensionality reduction is another approach that can be used
for channel fusion [150]. This involves transforming the original
channels into a smaller set of components that retain most of
the important information [151]. For example, the well-known

principal component analysis (PCA) transforms the original
channels into a set of linearly uncorrelated components while
retaining as much significant information as possible [152]. This
method can facilitate the handling of high-resolution images,
improve efficiency, and highlight the most significant patterns
in the data. There are also more advanced methods such as
the wavelet transform, which decomposes channels into differ-
ent frequency components [153]. These components are then
fused at various scales, capturing both spatial and frequency
information. This approach proves particularly advantageous
for conducting comprehensive multiscale analyses, enabling
a thorough exploration of both spatial features and frequency
characteristics within the data.

VII. EVALUATION METRICS

In the realm of MSSS for LCC, the evaluation of models
against ground truth data is necessary for assessing their ac-
curacy and effectiveness. This process involves comparing the
segmented outputs generated by the models with ground-truth
segmentation masks to determine how closely they match. Given
the importance of this evaluation, it becomes essential to employ
metrics that can accurately quantify the performance of semantic
segmentation algorithms.

In this section, we delve into the evaluation metrics that,
according to our review, are most commonly used in our field
of study. While many of these metrics are universally applied
across various segmentation tasks, their importance in validating
the results against ground-truth data remains paramount. In
the following sections, we will detail each metric, providing
explanations and interpretations.

A. Overall Accuracy

Overall accuracy (OA) is a straightforward metric that quan-
tifies the proportion of correctly classified pixels over the total
number of pixels in the image [23], [154]. It serves as a primary
measure for evaluating the overall effectiveness of semantic
segmentation models, especially when assessing their capability
to accurately distinguish between different classes across the
entire image [155]. A higher OA indicates a greater number
of pixels correctly classified, reflecting the model’s general



14312 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 17, 2024

performance in semantic segmentation tasks. Mathematically,
OA is calculated as the sum of correctly predicted pixels for all
classes divided by the total number of pixels in the image, as
follows:

OA =
TP + TN

TP + TN + FP + FN
(1)

where TP represents the true positives, TN the true negatives,
FP the false positives, and FN the false negatives.

In essence, a model with high OA has a greater capability to
segment the image accurately, aligning closely with the ground
truth. However, it is important to note that while high OA can
indicate effective segmentation, this metric may not fully capture
the model’s performance in handling class imbalance, where
certain classes are underrepresented in the dataset. Therefore,
OA should be considered alongside other metrics to provide a
more comprehensive evaluation of the model’s capabilities in
semantic segmentation.

B. Kappa Coefficient

The kappa coefficient, also known as kappa score, is a statistic
that measures interrater reliability for qualitative (categorical)
items [156]. It assess the agreement between the predicted labels
by a model and the ground truth, correcting for the agreement
that could occur by chance [157]. This metric provides a more
nuanced evaluation of model accuracy than simple percent
agreement, as it considers both the agreement on positive in-
stances and the potential for random agreement on negative
instances. Mathematically, the kappa coefficient is calculated
as

kappa =
Po − Pe

1− Pe
(2)

where Po is the observed agreement among raters, and Pe is the
hypothetical probability of chance agreement, calculated using
the frequencies of each category [157], [158].

High values of kappa show high agreement between what the
model predicts and the ground truth, suggesting that the model is
performing well. Conversely, low values of kappa would suggest
that much of the agreement could, in fact, be due to chance
and thus point to poor model performance. Values of kappa
range from −1 (perfect disagreement) through 0 (agreement
equivalent to chance) to 1 (perfect agreement) [157].

C. Mean Pixel Accuracy

Mean pixel accuracy (mPA) is an important metric for assess-
ing the performance of semantic segmentation models across
various classes, especially useful in datasets with class imbal-
ance. This metric computes the accuracy individually for each
class and then averages these values, ensuring a balanced evalu-
ation that considers the performance of the model on each class
independently [16], [159]. Mathematically, mPA is calculated
as follows:

mPA =
1

C

C∑
i=1

pii∑C
j=1 pij

(3)

where pii is the number of pixel of class i predicted to belong
to class j, and C is the number of categories.

A high mPA indicates that the model not only performs well
across all classes on average but also demonstrates consistent ac-
curacy and fairness in classifying different classes, regardless of
their frequency. Conversely, a low mPA points to inconsistencies
in the model’s ability to accurately classify different classes.

D. Precision

Precision, often referred to as the positive predictive value,
quantifies the accuracy of the positively predicted pixels or
segments within a specific class [160]. It is a crucial metric
for semantic segmentation models, especially when the cost of
FP is high. Precision is particularly insightful in datasets with
imbalanced classes [161], highlighting the model’s ability to
correctly identify relevant pixels amidst a majority of irrelevant
ones. Mathematically, precision is defined as the ratio of TP to
the sum of TP and FP, as follows:

Precision =
TP

TP + FP
. (4)

High precision indicates that the model is effective in seg-
menting pixels as belonging to the target class, with minimal
misclassification of other-class pixels as target class. This metric
is particularly valuable in scenarios where the objective is to
minimize incorrect segmentations of a specific class, even if it
means potentially missing some TP.

E. Recall

Recall, also known as sensitivity or true positive rate, mea-
sures the model’s ability to correctly identify all relevant in-
stances within a specific class [162]. This metric is paramount
in situations where failing to detect an instance of the target class
carries significant consequences. Defined as the ratio of TP to
the sum of TP and FN, recall provides insight into the model’s
comprehensiveness in capturing the target class instances [23],
as illustrated in the following equation:

Recall =
TP

TP + FN
. (5)

A model with high recall efficiently detects the majority, if
not all, true instances of a particular class, ensuring minimal
misses. While high recall is desirable, it is often achieved at the
expense of precision, as efforts to reduce missed detections can
lead to an increase in FP. Therefore, recall should be evaluated
in conjunction with precision to achieve a balance that suits the
specific requirements of the application at hand, enabling a more
nuanced understanding of the model’s performance tradeoffs.

F. F1-Score

The F1-score is a harmonic mean of precision and recall,
providing a single metric that balances both the model’s ability
to correctly identify positive instances and its ability to find
all positive instances [158], [163]. This metric is particularly
useful in scenarios where both FP and FN have significant
implications, and neither precision nor recall can be prioritized
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over the other [164]. It offers a way to evaluate the model’s
overall performance in semantic segmentation tasks, especially
when dealing with imbalanced datasets. Mathematically, the
F1-score is calculated as follows:

F1-score = 2× Precision × Recall
Precision + Recall

. (6)

Achieving a high F1-score is indicative of a model’s balanced
performance across its segmentation tasks, managing to both
accurately classify pixels as belonging to the target class and
encompassing the majority of those instances.

1) Mean F1-Score: The mean F1-score (mF1) averages the
F1-scores of each class, offering a balanced metric for multiclass
segmentation tasks [154]. It effectively captures the model’s per-
formance across all classes, especially useful in handling class
imbalances. Mathematically, the mF1 is computed as follows:

mF1 =
1

C

C∑
i=1

(
2× Precisioni × Recalli

Precisioni + Recalli

)
(7)

where C is the number of classes, and Precisioni and Recalli
measure the correct classification and completeness of the de-
tection for each class, respectively. A high mF1 score indicates
that the model performs well and consistently across differ-
ent classes, achieving a balance between identifying relevant
instances and minimizing oversegmentation. It is particularly
valuable for assessing performance in datasets where every class
is critical.

G. Intersection Over Union

Intersection over union (IoU), also known as the Jaccard in-
dex [163], is a fundamental metric for evaluating the accuracy of
semantic segmentation models. It measures the overlap between
the predicted segmentation and the ground truth, providing a
clear indication of the model’s precision in delineating target
areas [156]. The IoU is especially valuable for its ability to bal-
ance the impact of TP predictions against FP and FN predictions,
making it a comprehensive and robust metric for segmentation
tasks. Mathematically, this is represented as follows:

IoU =
|A ∩B|
|A ∪B| =

TP
TP + FP + FN

(8)

where |A ∩B| represents the intersection, which is the number
of pixels correctly identified as belonging to the target class by
both the model’s prediction and the ground truth. On the other
hand, |A ∪B| denotes the union or the total number of unique
pixels that have been classified as the target class in either the
prediction or the ground truth.

The IoU ranges from 0 to 1, where 0 indicates no overlap and 1
represents perfect segmentation alignment with the ground truth.
Thus, models with scores closer to 1 are better at identifying
and classifying all relevant pixels, ensuring that the segmented
output closely matches the ground truth.

1) Mean Intersection Over Union: The mean intersection
over union (mIoU) extends the concept of IoU by averaging
the IoU scores across all classes, offering a comprehensive
metric that evaluates the model’s segmentation performance

over the entire dataset [156]. This metric is especially beneficial
in scenarios with multiple classes, as it provides a holistic view
of the model’s effectiveness in segmenting each class relative to
the ground truth. The mIoU is calculated by first computing the
IoU for each class, then averaging these scores [23], [156]. The
formula is given as follows:

mIoU =
1

C

C∑
i=1

IoUi =
1

C

(
TP

TP + FP + FN

)
(9)

where IoUi is the IoU score for class i, and C is the total number
of classes.

mIoU scores also range from 0 to 1, with values closer to 1
indicating superior segmentation performance across all classes.
A high mIoU signifies not only that the model accurately identi-
fies the pixels belonging to each class but also that it effectively
minimizes misclassifications across the board. Conversely, a
lower mIoU score suggests that the model’s segmentation results
are inconsistent or generally inaccurate across different classes.

VIII. METHODS AND PARADIGMS

In this section, we describe the various MSSS methods and
paradigms for LCC that have been identified in the reviewed
papers. Our goal is to analyze the techniques and approaches
found in recent works that leverage MSI data to address LCC
challenges. This aims to provide a clear understanding of the
current methodologies and their applications in the field, il-
lustrating the advancements and innovations that characterize
contemporary practices.

A. Machine Learning

Despite the growing trend toward the adoption of DL tech-
niques in various CV tasks, including MSSS for LCC, our review
has identified a subset of research that continues to employ
traditional ML approaches. Although these methods do not
represent the majority of recent work, their presence underscores
a continued relevance in specific LCC contexts. The persistence
of these techniques underlines a methodological diversity that
enriches the research landscape, offering robust and efficient
alternatives for LCC. Within this group of reviewed works,
approaches based specifically on OBIA and PBIA with a primary
use of ML classifiers were found.

A prime example is identified in [165], where a case of LCC
in Johannesburg is addressed. The authors adopt the OBIA
approach, starting with a multiresolution segmentation (MRS)
algorithm that facilitates the grouping of pixels into coherent ob-
jects at multiple scales [166], allowing for the precise detection
of both fine and coarse features. This initial segmentation serves
as an essential preparatory step, outlining significant analytical
units without yet assigning them a semantic identity. Classifiers
are then used to assign each object a class or category based on its
characteristics. In this case, the effectiveness of two classifiers is
evaluated: SVM and RF, applied to MSI images with eight spec-
tral bands. In [167], another land cover mapping case study is
conducted, this time in Eyüpsultan, Türkiye, using SAR imagery
and 12-band MSI imagery. For mapping, an OBIA approach



14314 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 17, 2024

is followed, where initially an MRS algorithm is applied to
divide the images into homogeneous areas. Subsequently, three
classifiers, i.e., SVM, RF, and K-nearest neighbors (KNN), are
employed for semantic identification. In addition, NDVI is used
as supplementary information to enhance the identification of
vegetated areas. In the same way, in [168], another study is
conducted for LCC in the suburb of Malad Creek, Mumbai,
India, using MSI images consisting of eight bands. An OBIA
approach is used, where initially an MRS algorithm is applied
to delineate the zones. Prior to classification, PCA is applied
to reduce the data’s dimensionality. Finally, KNN and RF are
evaluated and compared for semantic classification.

Moving forward, the study conducted in [45] focuses on LCC
in the southwestern coastal area of Bangladesh, particularly in
the city of Barishal, Bangladesh. Images used are four bands:
RGB and NIR. In terms of methodology, two approaches are
evaluated: PBIA and OBIA. For the first approach, involving
direct application of the classifier, K-means and maximum
likelihood classifier are utilized. For the OBIA approach, the
MRS algorithm combined with KNN is employed. In addition,
in the second approach, NDVI, NDWI, and MSAVI2 indices are
utilized. Similarly, in [169], an evaluation study of various ML
approaches for mapping areas in northern Iran is conducted. For
this, the authors used RG-NIR images. In addition, a PBIA ap-
proach is applied, in which SVM and RF classifiers were directly
applied to produce the segmentation maps. Continuing with
approaches based on pixel analysis, Zhao et al. [170] delve into
LCC focusing on the urban area of Mardan, Pakistan. Their aim
is to evaluate the efficacy of ML tree-based methods in producing
precise classification maps, using MSI consisting of RGB, NIR,
and SWIR bands. In addition, they incorporate data from the
NDVI, MNDWI, and NDBI indices. In their exploration, the
authors experiment with three ML models: classification and
regression trees (CART), SVM, and RF. Employing a PBIA
approach, these models were directly applied to the data to obtain
the segmentation maps.

In this group of studies, a clear trend emerges: ML-based
methods are often used for case studies in specific areas. This
suggests that these methods are primarily employed to achieve
quick results with minimal resource expenditure, allowing for
rapid insights into the data. These approaches demonstrate the
practical utility of ML techniques in LCC tasks, providing effi-
cient and effective solutions. In addition, classifiers such as SVM
and RF are frequently used, highlighting their effectiveness in
handling MSI imagery without the need for extensive training
datasets.

B. Deep Learning

This section analyzes the DL-based methodologies found in
the reviewed literature. We have subdivided this into the main
methods, architectures, and paradigms identified as recurrent.
First, we examine the studies that apply existing methods di-
rectly to LCC tasks without significant modifications. Then,
we analyze the approaches that implement minor modifica-
tions to preexisting methods. Following this, we transition to

Fig. 20. UNet architecture.

contributions that rely on attention mechanisms (AMs). Subse-
quently, we discuss the works that utilize transformers, adding
another layer of complexity beyond AMs. After that, we explore
studies that leverage multiscale information. Next, we review
approaches that use edge information to enhance segmentation.
Subsequently, we analyze generative method-based approaches.
Finally, we examine approaches that process MS bands
independently.

Importantly, this subdivision is the result of the analysis of the
extracted works using the criteria mentioned in Section III. In
addition, we focus on the prominent methods and paradigms that
have demonstrated significant advancements and applicability
in the field of LCC using MSI. This approach ensures that
the review captures the most relevant and impactful techniques
currently being utilized, according to the extracted literature.

1) Off-the-Shelf Approaches: This segment of the review
highlights research that leverages established DL models applied
directly to address LCC using MSI. Unlike their counterparts in
ML, these studies harness the intrinsic power of DL architec-
tures, exploiting their sophisticated feature extraction and pat-
tern recognition capabilities without the need for customization.
Although few in number, these studies have emerged among the
works reviewed, reflecting a reliance on the robustness and gen-
eralizability of preexisting models. These approaches showcase
their immediate applicability and effectiveness in capturing the
nuanced distinctions within diverse land cover types.

Within this group of reviewed works, UNet has emerged as
the most commonly used architecture. UNet is a convolutional
architecture originally designed for semantic segmentation tasks
in medical images [82]. It is characterized by its U-shaped
structure, as shown in Fig. 20, composed of a contracting path
(encoder) to capture context and an expanding path (decoder) to
allow for input reconstruction along with precise object local-
ization [171]. This architecture facilitates network training with
a limited number of images by preserving context and location
information through skip connections between corresponding
layers of the encoder and decoder, significantly improving seg-
mentation accuracy.
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Fig. 21. PSPNet architecture.

Fig. 22. SegNet architecture.

To begin with, Zheng and Chen [172], [173] explore the
application of UNet using four-channel RGB-NIR images for
land cover mapping in different regions of China. Li et al. [5]
study the capability of UNet specifically in the Pidu area of China
for natural resource analysis. The study includes a comparison of
the impact of adding the NIR band in the segmentation process,
in contrast to a classic RGB configuration. Giang et al. [119]
conduct a land cover study in mining-affected areas in Da-
knong Province, Vietnam, using RGB-NIR images and UNet.
In addition, they evaluated the use of different optimizers in the
architecture.

Some works also utilize other well-known architectures in the
world of CV for direct application in LCC. Chaurasia et al. [174],
for example, map areas in the cities of Jacksonville and Om-
aha, USA, using data that contain panchromatic and eight-band
VNIR images. In this case, a UNet and a pyramid scene parsing
network (PSPNet) [175] are used to evaluate and compare their
performances. PSPNet, shown in Fig. 21, is an architecture that
consists of two main modules: first, a feature extractor, which
can be another pretrained architecture, and a pyramid pooling
module that gathers information at four different levels [176],
which is then concatenated to generate the final prediction map.

In the same vein, Sathyanarayanan et al. [177] conduct LCC in
areas of Mandya, India, using five-band images including RGB,
NIR, and SWIR. The architecture selected for segmentation is
SegNet [178], shown in Fig. 22, an encoder–decoder network
composed of a series of convolutional layers, with its main
innovation centered on the decoder. Specifically, it uses pooling
indices generated during the max-pooling in the encoding stage
to perform upsampling and generate the segmentation map.
Sivagami et al. [179] also include SegNet in their methods for
land cover mapping in urban areas of Germany using RG-NIR
images. In addition, the study includes a 152-layer residual

network (ResNet) [180], shown in Fig. 23, a CNN designed to
address the vanishing gradient problem. ResNet includes short-
cut connections that allow the gradient to skip some layers while
flowing through the network [181], suffering less degradation,
which consequently allows for the training of deeper networks.
ResNet has several variants depending on the desired depth, with
ResNet50, ResNet101, and ResNet152 being three of the most
commonly used versions.

This group of studies highlights the use of certain architec-
tures for direct application in LCC tasks using MSI. Most of
these works are focused on case studies for specific areas and
objectives and are not aimed at developing new methodologies.
However, they provide a general overview of the applicability of
the models and certain trends in their use, such as the recurrence
of UNet and the prominence of PSPNet and ResNet. Despite
being widely known architectures, they continue to be used,
specifically for LCC, and are perfectly applicable for handling
different bands and spectral information.

2) Off-the-Shelf Approaches With Slight Modifications: In
this review, we also identified studies that apply small or minor
modifications to existing architectures for LCC using MSI. Un-
like more advanced techniques that may involve complex mech-
anisms or significant architectural overhauls, these approaches
implement straightforward adjustments. These modifications
include minor changes to the network architecture, such as
adding or removing layers, and making slight alterations to some
components of the architecture. Similar to the previous group
of studies, this group is relatively small, but it highlights the
potential impact of even minor adjustments on improving model
performance to better handle the specific challenges of MSI.

First, Saxena et al. [182] introduce the Res-Seg-Net model, in-
spired by the architectures of ResNet and SegNet. The proposed
model features an encoder–decoder structure and integrates the
residual mapping of ResNet with the autoencoder approach
of SegNet, without using fully connected layers. This aims to
maintain high-resolution feature maps while reducing memory
consumption and inference time for processing seven-band im-
ages.

Moving forward, in [134], a study is conducted on mapping
mining sites in North America using UNet and RGB-NIR im-
ages. Slight changes are applied to the UNet, including reducing
the number of filters in the convolutional layers and using elastic
rectified linear unit (ReLU) instead of ReLU. In addition, NDVI
and SAVI indices are included in the input as auxiliary infor-
mation. Fan et al. [183] also use RGB-NIR images and UNet
as a baseline for land cover mapping in areas of Hangzhou and
Beijing, China. In this case, the modification involves replacing
the encoder of the original UNet with a ResNet50 to develop
Res-UNet. Furthermore, a second modification includes adding
an inception module to the early layers of Res-UNet in search
of additional performance improvement.

Another UNet-based approach for LCC using seven-band
images, focusing on increasing the network’s depth is proposed
in [184]. However, instead of simply adding more layers, which
can lead to overfitting, the authors decided to use 1 × 1 con-
volutional layers, allowing for an increase in depth without
significantly increasing the number of parameters. In addition,
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Fig. 23. ResNet152 architecture.

Fig. 24. UNet 3-D architecture.

they reduced the size of the kernels to 3 × 3, as they have
the same effect as larger kernels. Pooling is also employed
after each phase to reduce overfitting. To enhance the ability
to propagate information from the early to the later layers, some
deep supervised layers are added to supervise the network’s
training. Finally, padding layers and batch normalization layers
are used to maintain network stability and improve the ability to
capture data distribution.

Likewise, Aliyu et al. [185] aim to optimize the 3D-Unet
architecture, shown in Fig. 24, which originally consists of
19 069 955 parameters, through strategies aimed at reducing
bottlenecks and improving processing efficiency for LCC in
seven-band MSI images. This optimization is achieved by in-
creasing the number of channels before the max-pooling op-
eration, allowing for a more refined analysis of the data. The
methodology employs image tiles in voxel format of seven
channels, resulting in precise segmentation in three dimensions,
providing a broad context for effective learning of each voxel.
In addition, batch normalization is incorporated for each ReLU
activation, adjusting the mean and standard deviation during
training and subsequently applying scale and bias adjustments
based on global statistics during the testing phase. Furthermore,
the model assigns null weights to unlabeled pixels, focusing
learning on labeled data to ensure effectiveness and accuracy in
segmentation.

In this group of studies, the recurrence of architectures, such
as UNet and ResNet, is once again evident for the application
of DL models with slight modifications. In addition, these
works demonstrate how these architectures can be integrated
to combine their best capabilities. By leveraging the strengths
of each architecture without a significant increase in compu-
tational resources, these studies illustrate the potential of small
adjustments to enhance model performance for LCC using MSI.

Fig. 25. Basic structure of an SE network.

3) Attention Mechanisms: Within the techniques and
paradigms identified in this review for LCC using MSI, AMs
have been identified as significant tools. Initially, neural net-
works were designed to process inputs in a sequential or hier-
archical manner, exemplified by approaches such as CNNs for
image processing tasks and RNNs for sequential data. However,
these traditional architectures faced limitations, particularly in
capturing long-range dependencies and contextual relationships
within data [186], [187]. This paved the way for the develop-
ment of AMs, which have since revolutionized the landscape
of DL. AMs are inspired by the cognitive processes of human
perception that emphasize relevant signals while ignoring less
useful ones. Fundamentally, the AM operates similarly, allowing
neural networks to selectively focus on specific parts of the input
data [188].

Initially, the AM was introduced with the aim of improving
the performance of the encoder–decoder model used in machine
translation [189]. This allows the decoder to effectively utilize
the most relevant parts of the input sequence by employing
a weighted combination of all encoded input vectors, assign-
ing higher weights to the most relevant vectors. This proved
highly effective for natural language processing (NLP) tasks,
and shortly thereafter, they were adapted for CV, where AMs
allow neural networks to selectively focus on specific parts of
input images [10], thereby enhancing the ability to recognize
and understand complex visual patterns. In MSSS, particularly
for LCC, these AMs have been successfully applied. Their
ability to capture complex contextual relationships allows for
improved identification and differentiation among various land
cover classes, resulting in more precise segmentation.

Several studies have demonstrated the effectiveness of AMs
in LCC. For instance, Yang et al. [190] integrate an AM into
each skip connection of a UNet network. This mechanism uses
a squeeze-and-excitation (SE) [191] design (see Fig. 25) through
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pooling layers and fully connected layers to assign different
weights to the channels of an RGB-NIR-NDVI input, fusing only
the relevant information. Similarly, Nong et al. [192] introduce
an AM in the skip connections of a UNet branch responsible for
segmentation, applied to RGB-NIR-DSM and RG-NIR-DSM
images. Another contribution [156] takes a different approach
by integrating a channel attention module with discrete cosine
transformation to extract global low-frequency features from
RG-NIR and RGB-NIR images. This method allows for dynamic
modeling of channel relationships across different frequencies,
corresponding to various land cover types.

In some cases, SE-based AMs are used to bridge the gap
between different feature levels. For example, Huang et al. [193]
integrate an SE-based AM between the encoding stages of an
encoder–decoder architecture to fuse higher level and lower level
features, reducing the interlevel semantic gap from RG-NIR
images. Similarly, Liang and Wang [194] employ a channel-
level AM to control the fusion of higher level and lower
level features and model the importance of the channels in
four-band and seven-band MSI images. Likewise, in [195],
AMs handle both low-level and high-level features using a
dual-branch approach. Each branch integrates an SE-based
patch-level attention module to enhance feature representa-
tion. In addition, an attention embedding module enriches low-
level features by embedding local attention from high-level
features. Finally, these enriched features are fused for im-
proved segmentation from RGB-NIR-DSM and RG-NIR-DSM
images.

Other approaches have focused on multiattention modules
to enhance the extraction of spectral and spatial information
from MSI. In [196], a multiattention module employs different
pooling strategies and applies them to various groups of spectral
bands (RGB, NIR, RE, and SWIR) to obtain rich features,
enabling better LCC. Meanwhile, Chen et al. [197] employs
two AMs: one for channel attention and another for spatial
attention when processing RGB-NIR and RG-NIR images. The
first focuses on interchannel relationships, while the second
evaluates pixel connections across spatial locations. These two
modules are connected in a cascade, with channel attention
feeding into spatial attention, enhancing the perception of both
spatial relationships and those between different MSI bands.
A similar dual-attention approach is observed in [160], where
features from a MobileNetV2 backbone are processed by a
channel attention module followed by a spatial attention module.
This sequence highlights significant features and minimizes less
relevant ones from RGB-NIR images. Similarly, in [198], a
framework with multiple AMs is proposed to improve MSI
segmentation by considering not only spatial and channel infor-
mation but also class-level information. It features two parallel
branches: the class augmented attention module with class chan-
nel attention, and the region shuffle attention module. The class
augmented attention calculates category-based correlations and
generates weighted class representations, while the class chan-
nel attention recalibrates class-level information. The region
shuffle attention captures regionwise global information with a
shuffling operator, reducing feature redundancy and improving
efficiency.

In [199], large kernel attention is incorporated within the
encoder of a SegNet-based architecture to effectively capture
long-range dependencies. The decoder of this architecture fur-
ther enhances feature representation by employing a coordinate
attention module that embeds positional information through
pooling in horizontal and vertical directions, creating attention
maps that result in better segmentation maps from RGB-NIR-
DSM images. Building on kernel-based ideas, in [200], the dot
product AM is rethought by generalizing as a kernel operation
and using softplus instead of ReLU, forming a kernel attention
module that reduces the complexity of the attention operation
to a linear level. This module processes spatial features, while
channel attention blocks model channel-level features from a
ResNet50 backbone. Multiple attention blocks are used to pro-
cess MSI inputs, achieving improved segmentation.

Overall, these studies illustrate that the use of AMs is prevalent
in LCC using MSI. By selectively focusing on relevant parts of
the input data and capturing complex contextual relationships,
AMs provide a powerful means to improve the accuracy and
efficiency of MSI segmentation approaches. Moreover, AMs are
versatile, as they can be employed for various aspects, such as
channel level or spatial level, to achieve better feature representa-
tion, which is then used to obtain improved segmentation results.
The progress in applying AMs in this field suggests promising
directions for future research, with potential for developing even
more sophisticated models that can handle increasingly complex
datasets and specific land cover challenges.

4) Transformers: Transformers are a type of neural network
architecture initially developed for NLP tasks. They were con-
ceived to handle sequential data, enable parallel processing,
and ultimately address the “memory” limitations of RNNs.
Transformers operate based on AMs, being the inaugural neural
network model to be entirely founded on them without the
need for recurrence. As shown in Fig. 26, the Transformer
follows an encoder–decoder structure, where both components
primarily consist of multihead attention modules, which in turn
are built from multiple layers of self-attention mechanisms.
In addition, transformers employ positional encoding, which
provides information about the order of elements in a sequence,
crucial for understanding context. Given the high performance
demonstrated by Transformers, they have become a fundamental
model in AI.

Transformers were soon adapted for tasks in CV, leading to
the development of the Vision Transformer (ViT) [201]. The ViT
was introduced to leverage the strengths of transformers for im-
age analysis. Unlike traditional CNNs that rely on convolutions
to capture local patterns, the ViT models images as sequences
of patches. Each image is divided into fixed-size patches, which
are then flattened and linearly embedded [202]. These embed-
dings are combined with positional encodings to retain spatial
information, and the resulting sequence is fed to a standard
Transformer encoder. The output of the Transformer encoder
consists of a series of vectors, each corresponding to an input
patch. In the original ViT (see Fig. 27), a special “classification
token” is appended to the sequence of patch embeddings, and
the corresponding output vector from the encoder is used as the
image representation. This output vector is then passed through
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Fig. 26. Transformer architecture and its main components.

Fig. 27. ViT architecture.

a multilayer perceptron head for image classification. However,
the flexible nature of the ViT architecture allows it to be adapted
for other vision tasks such as object detection, image captioning,
segmentation, among others.

In the field of LCC using MSI, the use of Transformers has
found its natural application, given their effectiveness and ability
to analyze images with high precision. Furthermore, Transform-
ers for CV have continued to improve, with new variants being
developed to extend their range of applications. Importantly,
as is evident, Transformers inherently possess the capabilities
of AMs, a topic previously discussed. Therefore, this group of

works examines contributions that specifically use Transformers
as an architecture, rather than just isolated AMs.

In this review, it is observed that Transformers are primarily
used as feature extractors/encoders. This may be because trans-
formers are highly effective at capturing complex relationships
and long-range dependencies in the data, making them ideal for
extracting detailed and contextual features of different types of
land cover, which can then be classified. For example, the authors
of [203], [204], and [205] use a Swin Transformer [206] as the
sole and primary encoder within their LCC architectures; the first
to process RG-NIR-DSM, and the last two for RG-NIR images.
The Swin Transformer is a variant of the ViT that employs a
shifted-window structure for reduced computational complexity
and hierarchical feature extraction capabilities.

Other variants of ViT are also used, such as in [207], where
the encoder is composed of four Mix Transformer [208] blocks
that implement efficient self-attention instead of the standard
self-attention used in ViT, reducing computational complexity
when processing RG-NIR images. For the same type of image,
in [209], the Pyramid ViT [210] is used as the encoder, which
allows for multilevel feature extraction and uses a progressive
shrinking pyramid to reduce the computations of large feature
maps, along with spatial-reduction attention to further reduce
resource consumption.

In other contributions, Transformers are used to complement
other CNN-based encoders. This allows for the extraction of
global semantic information with the help of the Transformer
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and the low-level contextual spatial information provided by
CNNs, which can then be fused or processed to obtain rich
features that guide better segmentation. In this group of works,
Chen et al. [211] adopt a serial double coding structure using
four ResNet50 blocks along with eight Transformer blocks to
segment RG-NIR images. The work in [212] uses two parallel
encoders, specifically a Swin Transformer and a ResNet34, to
extract features from the same image (RG-NIR) simultaneously,
with connections between the two branches that allow for fea-
ture fusion at different stages. Similarly, He et al. [213] use a
Swin Transformer and link it with a UNet to form a parallel
dual-encoder structure with a primary encoder, UNet, and an
auxiliary encoder, Swin Transformer, for rich feature extraction
from RG-NIR images, that will then be used by the original
decoder of the U-shaped network for obtaining the segmentation
result.

Some works use the Transformers not only for feature ex-
traction but also experiment with their capabilities for the
decoding phase. Liu et al. [214], for example, implement a
fully Transformer-inspired approach, where a ViT functions as
the encoder for feature extraction of RG-NIR images, and a
Transformer decoder is designed to receive the features from
the ViT, resize them to different levels, fuse them, and integrate
both global and local semantic contextual information to make
predictions. In [215], the focus is on using Transformers specif-
ically for the decoding part using RG-NIR images. The work
uses a ResNet50 as the encoder and develops a channel-spatial
Transformer block that aggregates the local, channel, and global
features extracted by the encoder, connected in a serial manner
with a global cross-fusion module for the interactive fusion of
the features, which are then used for prediction.

In summary, it is evident that the use of transformers has
found significant applicability in this field. They are extensively
used for encoding due to their ability to capture complex rela-
tionships within the data, often becoming the preferred choice
over traditional CNNs. Moreover, there is still room to explore
the capabilities of Transformers in decoding processes, as well
as the potential development of more efficient variants. This
is particularly important given that the inherent computational
cost of Transformers is higher than that of CNNs. As research
progresses, we can expect further innovations that leverage the
strengths of Transformers while addressing their limitations,
thereby enhancing their applicability in LCC.

5) Multiscale Techniques: Various approaches identified in
the literature makes use of multiscale information to address
MSSS for LCC. Multiscale techniques involve analyzing data at
various spatial resolutions to capture details at different levels of
granularity, as shown in Fig. 28. This allows for a more nuanced
understanding of the land cover features, as both fine and coarse
details can be considered, potentially enhancing the accuracy
and robustness of segmentation models.

To begin, it has been identified that several works make use
of atrous spatial pyramid pooling (ASPP) [216] within their
architectures to leverage multiscale information. ASPP is a
module that enables the resampling of a given feature layer at
multiple rates, as shown in Fig. 29. In other words, it allows an
image to be analyzed at different scales using different dilation

Fig. 28. Illustrative example of the use of multiscale information.

Fig. 29. Atrous spatial pyramid pooling.

rates, capturing more contextual information from it [217]. This
is achieved by applying Atrous convolutions, also known as
dilated convolutions [218], in parallel layers, each with its own
unique sampling rate.

The ASPP module is usually placed after the backbone or
feature extractor to process the extracted features at multiple
scales. Under the DeepLabV3 framework, Hou et al. [219] use
a simple approach linking an ASPP module after a ResNet101
encoder and concatenating the features to obtain the segmen-
tation map from RGB-NIR images. In [70], an ASPP module
is also integrated after a ResNet101 backbone but opts to use a
fully differentiable forest as the decoder for segmenting RG-NIR
images. Similarly, Chen et al. [197] employ a ResNet101 as
the backbone to process RGB-NIR and RG-NIR images and
link it with an ASPP, but modify the latter by removing the
global average pooling branch to reduce noise. Zhang et al. [220]
use ResNet pretrained backbones (50 and 101) along with an
ASPP module and additionally incorporate connections that link
the encoder and the decoder through the ASPP to obtain addi-
tional features that enhance segmentation from RG-NIR-nDSM
images.
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In [17], an ASPP module is integrated in each skip connection
of a UNet across four levels of encoding–decoding for segment-
ing RGB-NIR-SWIR images. Nuradili et al. [31] operate on
the DeepLabV3 framework employing a ResNet50 backbone,
which is connected to an ASPP to extract multiscale features
from RGB-NIR-RE-TIR images, which are then decoded with
the DeepLab decoder head. Similarly, Wang et al. [221] work
within the DeepLabV3+ framework and RG-NIR images, inte-
grating an ASPP module after a ResNet (50 and 101) encoder;
however, they modify the decoder by using a tri-branch decoder.
The work in [222] uses a multiscale context-feature-aggregation
process based on ASPP. Two modules are added in the encoder
stage to fuse features from multiscale receptive fields of RGB-
NIR and DSM images, respectively, and obtain global multiscale
context information to guide decoding. In [160], another variant
of ASPP is used for handling multiscale information through
the incorporation of depthwise atrous spatial pyramid pooling
(DASPP) to process RGB-NIR images. DASPP implements
atrous depthwise separable convolution to replace atrous convo-
lution of ASPP, thereby lowering the computational cost while
maintaining high performance.

Other approaches seek to extract multiscale information ef-
fectively for later use. For example, Liu et al. [156] incorporate a
multiscale feature extraction module, utilizing differently scaled
patches to gather both global and local image information from
RG-NIR and RGB-NIR images. This division into large- and
small-scale patches allows for an enhanced input that enriches
the extraction process for multiscale features. For example, Li
et al. [223] adopt an architecture with high-resolution resource
extracting network [224] as the backbone for RGB-NIR and
RG-NIR images, which integrates high- and low-resolution
branches in parallel that decrease in resolution, progressing
through four stages where each one produces an additional
branch that interacts with the others. It then integrates a pyra-
mid pooling module to extract contextual information at differ-
ent scales, which are subsequently concatenated and used for
prediction.

Moving forward, other works focus on multiscale information
handling with approaches different from the use of ASPP. For
instance, Zheng et al. [225] use four ResNet101 blocks as the
backbone, each extracting information at different scales from
RGB-NIR and RG-NIR images. These blocks are connected to
four decoding phases through a module that performs weighting
and summing of the features, thereby fusing the multiscale infor-
mation. Similarly, Zhang et al. [85] use a UNet with a ResNet34
backbone as the baseline and add a multilevel aggregation mod-
ule to encode contextual information across different scales and
adaptively fuse them to integrate both global and local informa-
tion from 13- and 18-band images. Cheng et al. [80], instead of
simply concatenating features from different hierarchical layers
of a CNN backbone, use a multiscale global context fusion mod-
ule based on entropy to adaptively merge global features from
RGB-NIR images. In addition, it employs a multilevel context
integration module to capture local context information, such
as dense areas of small objects. In a related development, Zhou
et al. [226] incorporate a dense cross-decoder for multiscale
dense fusion, exploiting rich semantic information in high-level

Fig. 30. Concept of the use of edges to improve LCC.

features to guide and refine low-level features comprehensively
from RG-NIR images.

In summary, the use of multiscale information has emerged
as a significant area of interest in the field of LCC using MSI.
Given the inherent use of aerial imagery in this field, analyzing
information at different levels can provide better context and
detail, leading to more effective segmentation and classification
of various land cover types. The reviewed works demonstrate di-
verse methods related to multiscale information, from extraction
to fusion, showing that this is not only a recurrently explored field
but also one with room for proposing new methods that enable
a better and more efficient use of this type of information.

6) Use of Edge/Boundary Information: Another approach
identified involves the utilization of edges, or boundaries, to
enhance LCC. Edges can be defined as the points in a digital
image where there is a significant change in intensity. This set
of points forms boundaries that allow differentiating disjoint
regions. Edges provide important information about the char-
acteristics of an image, such as corners, lines, and curves; they
also provide strong visual clues that can help in different pattern
recognition processes.

In LCC, edges often correspond to transitions between dif-
ferent land cover types, providing information that could be
useful for accurate classification. By leveraging edge data, these
approaches aim to improve the delineation of distinct land
cover classes, leading to more precise and reliable segmentation
results and consequently providing better insights into the spatial
distribution of the land surface. An illustration of the use of edges
for LCC can be seen in Fig. 30.

To start with, in [192], a boundary-aware dual-stream net-
work is introduced, featuring two components: a segmentation
subnetwork and an edge detection branch. Both subnetworks
are based on UNet, but the edge network incorporates fewer
pooling layers. The decoders of the subnetworks are connected
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through a module that introduces boundary information from
the edge subnetwork to the segmentation subnetwork, using a
design similar to an AM but without the self-attention features.
This approach enables more precise and well-defined segmen-
tation from RGB-NIR and RG-NIR images. Similarly, Wang
et al. [221] propose a tri-branch network that uses edge infor-
mation to improve segmentation and estimate height from MSI
RG-NIR imagery. The inputs are first processed by a ResNet (50
or 101) backbone, and then, those features are fed to each branch.
Like the previous work, boundary information is shared at the
decoder level through a boundary masking module, AM-like,
that incorporates spatial boundary information into both the
segmentation and height task branches to enhance their accuracy.

Other contributions utilize edge information not connected
to the decoders but instead employ it in earlier stages of the
segmentation process. For example, in [85], an encoder–decoder
approach is used with three main components: a 3-D spectral
information extraction module, a spatial information extraction
module, and an edge information extraction module. The latter
follows a siamese encoder structure with multiple layers that
extract edge features and fuse them with the previous layer’s
features. The edge module shares weights with the spatial mod-
ule, and the features obtained from this sharing are used along-
side the spectral module’s features for decoding and generating
segmentation from MSI 13- and 18-band images.

In other instances, edge information is used as a guide to
direct the segmentation process, aiming for better performance.
In [227], an edge detection guidance module is used to improve
segmentation from MSI images and their DSM information.
Specifically, edge detection guidance is utilized to extract bound-
ary features and use them as additional weights to assist the
adaptive multimodal (RG-NIR+nDSM) fusion between high-
level and low-level features of the inputs processed by ResNet50
blocks, ultimately decoding and obtaining segmentation maps.
Similarly, in [228], an edge-aware module is incorporated within
the spatial branch of a dual-branch encoder architecture, which
upsamples, concatenates, and convolves spatial features to ob-
tain edge information. This edge information, used as weights,
guides the aggregation of semantic and spatial features, which
are then decoded to generate segmentation maps from RG-NIR
images. In similar fashion, in [229], a boundary guidance mod-
ule is proposed, consisting of a simple structure formed by
convolutions. This module combines low-level and high-level
features from a Res2Net-50 backbone and assigns weights to
these features based on the relevance of their semantic boundary
information. Consequently, this generates features with rich
semantic information linked to object boundaries from RGB-
NIR and RG-NIR images, which are used along with spatial
information to achieve segmentation with less ambiguity at the
edges.

This group of works indicates that there is a significant current
research avenue focused on leveraging edge information for
MSSS. Specifically, in LCC, one of the challenges is precisely
achieving an adequate differentiation of the different cover types
and obtaining uniform and consistent edges between each of
them, especially considering the type of imagery used and the
perspective. Therefore, these approaches promise to enhance the

Fig. 31. Basic structure of a GAN.

ability of models to precisely delineate the boundaries between
different land cover types, allowing for a more detailed and
nuanced classification.

7) Generative Approaches: In the field of LCC using MSI,
several challenges can arise that complicate the segmentation
process. These challenges include problems such as poor image
resolution, limited data availability, and complexity in acquiring
new images. Generative AI offers promising solutions to these
challenges. Generative AI refers to models that can create new
data samples similar to the original data. By generating synthetic
data that closely resemble real data, these models can augment
and diversify training datasets, making them more robust and
comprehensive. Generative approaches can also enhance image
resolution, extract meaningful features, and provide supplemen-
tal inputs that improve the accuracy of segmentation tasks.

Generative approaches have their foundations in methods
such as autoencoders, which learn efficient codings of input
data to reconstruct it accurately, and variational autoencoders
(VAEs), which introduce a probabilistic approach to the encod-
ing process to generate new data samples. However, the trend has
shifted toward more advanced methods such as GANs. A GAN
is a DL architecture that consists of at least two modules: a gener-
ator and a discriminator, as shown in Fig. 31. These modules are
trained simultaneously through adversarial training, in which the
generator creates synthetic samples following the distribution of
the real data, and the discriminator evaluates the generated data
against real. The goal is to adjust the architecture so that the
generator is capable of creating high-quality synthetic data that
are indistinguishable from real data by the discriminator.

Given the ability of generative techniques to create high-
quality data, the literature reviewed shows that they are be-
ing used in the field of LCC using MSI to address certain
limitations with the available data. For example, generative
methods can be used to handle, improve, or correct the reso-
lution of images. In [230], a GAN-based approach is employed
for LCC using high-resolution RGB-NIR images reconstructed
from low-resolution images. A progressive growing GAN [231]
is used, trimming the generator and adding skip connections
to improve network stability. The generator aims to produce
a high-resolution remote sensing images that closely resemble
the reals. These reconstructed images are then processed by
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Fig. 32. CGAN structure.

classifiers to obtain segmentation maps. In [232], GANs are
also used to handle image resolution, employing a multistage
framework where each level consists of a UNet-based generator
and a ResNet18-based discriminator. The network structure
works by starting with a low-resolution MSI (combinations
of RGB, NIR, NDVI, and nDSM) image and incrementally
generating a high-resolution segmentation mask through each
level. The initial generator takes the original image as input,
while subsequent generators use the upsampled output from the
preceding layer, progressively improving the precision and detail
of segmentation.

Other approaches leverage generative techniques to augment
the available data, allowing for the training of more robust
segmentation models. In [196], an architecture with a generator–
discriminator design is proposed. The generator, based on deep
convolutional GAN, creates synthetic images from random noise
through deconvolution layers to improve model robustness.
The discriminator processes these images alongside real data,
splitting them into different spectral bands and outputting class
predictions and authenticity verification. In [233], a GAN is
also used for data augmentation and consequently to improve
model performance in LCC. This contribution introduces a
conductor, which is an encoder–decoder network that learns
different semantic embeddings and provides feedback to the
generator for the synthesis of better MSI-like (RGB-NIR) im-
ages. Shi et al. [234] also utilize a GAN to augment the available
data by using two very-high-resolution samples from different
classes combined as input. This input is fed into the architecture
that generates synthetic samples containing features from both
original samples, thus creating images, RG-NIR-like, close to
the classification boundary to form more robust datasets.

Furthermore, other GAN variants are also employed for MSI
data generation. For example, in [235], a conditional GAN
(CGAN) [236] is used to generate fake remote sensing MSI-like
images from predefined ground truths used as the “condition.” A
CGAN, shown in Fig. 32, is a type of GAN where the generation
process is conditioned on additional information, such as class
labels, allowing for more controlled data generation. The used
CGAN is trained with pairs of real MSI (RG-NIR) images and
their corresponding ground truths, and is used to increase the
diversity of the training dataset that is subsequently utilized by
CNN models for segmentation. Similarly, Sui et al. [237] apply
a CGAN to augment training images, incorporating edge and
boundary features. The generator used is UNet-based, while
the discriminator is based on PatchGAN [238]. In this case,

Fig. 33. Operation of a diffusion model by gradually adding noise and then
reversing.

Fig. 34. Example of image generation through a diffusion process.

for training, the “condition” used includes the ground truth, and
edge features, along with noise, to generate MSI (RG-NIR)-like
images from this input.

Generative techniques can be used to generate spectral infor-
mation to complement existing datasets. For example, Paoletti
et al. [239] generate DSMs using an architecture composed of
two encoder–decoder VAE generators and two discriminators
with a shared latent space. This architecture allows the genera-
tion of DSM from very high resolution optical images, through
an image-to-image translation process. These DSMs can later
be used as additional input to improve the performance of MSI
segmentation, such as for RG-NIR images for LCC with which
this approach was tested. Similarly, Costa et al. [240] use a
CGAN to generate DSMs from very-high-resolution images.
The framework begins by segmenting an input image with a
SegNet, and the output is fed into a UNet-based generator
to produce a DSM. The generated DSM is evaluated by the
discriminator, which provides corrections based on the original
DSM, training the generator to create accurate DSMs.

More recently, sophisticated generative approaches have been
proposed, positioning themselves as potential tools for inclusion
in LCC systems, such as diffusion models [241]. A diffusion
model is a type of generative model that is trained to learn
how to reverse a noise-adding process, as shown in Fig. 33. A
diffusion process iteratively introduces noise, usually Gaussian
noise, to the original data, causing it to gradually lose its initial
characteristics. A diffusion model is trained to reconstruct the
original data through an inverse diffusion process, allowing it
to learn the data distribution and consequently gain the ability
to generate new samples, as shown in the example of Fig. 34.
These models have shown great promise in generating realistic
and high-quality images and could be adapted for use in LCC
using MSI.
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In [242], for example, the use of diffusion models for the
segmentation of aerial images is proposed. This approach be-
gins with an initial segmentation generated as pure noise. The
noise function is applied iteratively to diffuse the previously
predicted segmentation. Then, the diffusion model uses a real
image as a condition to remove the noise from the diffused
segmentation. The resulting segmentation is compared with the
ground truth to adjust the noise function recursively. This type
of diffusion techniques promises to improve the robustness and
accuracy of segmentation models using MSI, as demonstrated
by the mentioned study, which showed successful aerial building
segmentation from RG-NIR images.

As seen, generative techniques are highly useful for LCC
tasks. In a field where the quantity and quality of images can
be a limiting factor for developing robust models, generative
techniques present themselves as the best option. They have
been shown to address various tasks, from improving resolution
to generating spectral information, demonstrating their broad
applicability. In addition, there is still room for experimentation
to generate other types of information or different spectral bands,
further enhancing their potential in this domain. Moreover, novel
generative techniques, such as diffusion modeling, offer new
avenues for research and application in this field.

8) Independent Band/Spectra Processing: Typically, CV
models are fed with input images without extensive prepro-
cessing at the channel level. This is because most tasks and
applications work with standard RGB images, and all tools are
default-prepared to handle this configuration. When using MSI,
the most straightforward approach is to process the images as
a single entity by either expanding the number of channels
in the input, stacking the spectral bands, or preliminarily fus-
ing all the spectral bands into a single tensor. However, these
approaches may not fully leverage the information provided
by each band or spectral information. To address this, some
studies have explored the idea of processing spectral bands
separately, with the aim of improving the utilization of the
information they provide. By separating the spectral bands
or grouping them into specific subsets, as shown in the ex-
ample in Fig. 35, it is possible to conduct a more targeted
analysis of the unique information contained in each band,
potentially leading to better classification and segmentation
results.

To begin with, some approaches have opted to split different
spectral bands. Xu et al. [243], for example, divide the input
image into two modalities: RGB and NIR. To process this infor-
mation, it adopts a dual-encoder and mono-decoder structure,
where each spectral group is fed into its respective encoder for
simultaneous feature extraction. The encoders have the same
structure based on convolutional layers and pooling, sharing skip
connections with the decoder, which receives the feature maps
and processes them to obtain the prediction. Following a similar
design, Wang et al. [244] utilize two CNN encoder networks to
process an input divided into RGB and NIR, respectively. Each
branch simultaneously extracts the features, which are then fused
with shared weights and decoded. Similarly, Jiang et al. [245]
also divide the input MSI into RGB and NIR. For processing,

Fig. 35. Illustrative example of a encoding process for an MSI image following
the approach of band grouping into different spectra.

they adapt a UNet, duplicating its backbone to simultaneously
extract features from each spectral group, which are then con-
catenated and upsampled to obtain the prediction. The same
approach is followed in [246], where a UNet is modified to
incorporate two separate input nodes to encode RGB and NIR,
respectively. These inputs are then concatenated and decoded
using the UNet decoder.

Other approaches handle more than four channels in their
architectures. To begin with, Tao et al. [23] divide the bands of an
MSI into two groups, visible and invisible light, for simultaneous
feature extraction. Specifically, they propose two configurations:
one that processes RGB and NIR bands (four channels in total)
and another that processes RGB and NIR+spectral indices (six
channels in total). To process this information, they use an
approach with two twin ResNet50-based encoders, each receiv-
ing a spectral group (visible and invisible). The first backbone
extracts color features, texture features, and spatial relationships,
while the second extracts spectral features, which are then de-
coded to obtain the segmentation. In [247], an RGB-NIR image
is divided into two combinations, i.e., RGB and GB-NIR, to
obtain two inputs, totaling six channels. Each of these inputs
is fed into its respective ResNet-based backbone for feature
extraction. Each feature map is then upsampled and concate-
nated using two horizontal connections to obtain the prediction.
Zhang and Yang [196] expand the range of bands used, han-
dling ten-channel images. These images are first split into four
different spectral groups based on their optical characteristics:
RGB, NIR, RE, and SWIR. Each group is then encoded by a
respective CNN-based backbone, each with the same structure,
and the features are concatenated and decoded to obtain the
classification.

Certain methods opt to process MSI data in groups, also
including other types of spectral information in addition to
channels. For example, Li et al. [248] implement a dual-branch
approach to process an RG-NIR image on the one hand and its
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DSM on the other hand. To do this, two feature extractors are
used: one based on Xception for the RG-NIR part, and another
branch with convolutional layers, separable convolutions, and
inner residual blocks to process the DSM. These features are
then concatenated and decoded to obtain the segmentation. A
similar approach is used in [222], which utilizes a configura-
tion of two twin ResNet50 backbones to process an RG-NIR
image and its DSM, extract their features, subsequently fuse
them, and finally decode them. The same applies in [249], with
the difference of using a ResNet101 to form two extractors
responsible for processing MSI images (RGB-NIR or RG-NIR)
and their DSMs, respectively. In a slightly different approach,
Zhou et al. [250] varies in the use of spectral information by
addressing the processing of RG-NIR images and their nDSM.
To achieve this, two ResNet50 backbones are applied to extract
features, which are then fused, refined, and used to generate
predictions. In a similar approach, Zhou et al. [251] also pro-
cesses RG-NIR and nDSM information using two encoders; in
this case, a ResNet50 is used for RG-NIR and a MobileNetV2
for the nDSM to generate features, which are then subsequently
decoded.

In summary, grouping or splitting the spectral information of
MSI images for separate processing is a promising approach that
can improve data utilization and achieve better segmentation
results. The reviewed works in this group suggest that this
approach is primarily used in the encoding or feature extraction
stage to capture detailed and specific information from each
spectral group. This can potentially contribute to more effective
combination of features, more precise decoding, and, conse-
quently, better classification of different land cover types.

IX. DISCUSSION AND OUTCOMES

In this section, we present the key research outcomes derived
from our review. We aim to highlight prevalent trends, ap-
proaches, and emergent themes that characterize the current state
of research. These outcomes not only reflect the advancements
within the domain but also offer insights into potential future
directions, enabling us to infer underlying patterns and priorities
that are shaping the evolution of LCC. In addition, Table XIV
presents a summary of all the contributions considered in this
review that provides additional insights.

A. Comments on MSSS Methods for LCC

The landscape of MSSS methods for LCC exhibits a clear
trend toward the utilization of AI techniques. Interestingly,
this review did not uncover any studies employing traditional
image processing methods for this task, underscoring a dominant
preference for AI-driven approaches in recent years. A deeper
analysis reveals a particular focus on DL rather than ML. While
our review did identify a number of studies employing ML
techniques, their application was predominantly oriented toward
specific case studies rather than the development of new methods
or approaches based on these techniques. This trend suggests that
ML plays a complementary role, rather than a leading one, in
advancing MSSS for LCC.

It is noteworthy that ML methods are applied in both PBIA
and OBIA approaches. Moreover, the MRS algorithm, primar-
ily utilized through the eCognition software,21 was the most
common method for object delineation prior to classification.
Furthermore, for the semantic classification of pixels, SVM and
RF emerged as the most frequently applied techniques in the
corpus of reviewed studies. They are also the methods that report
the best numbers, with figures above 90% in several cases [165],
[167], [169], [170]. Although less prevalent, the continued use
of these ML methods reveals their robustness and capability
to meet the demands of specific application fields, consistently
delivering acceptable performance.

Regarding the DL methods in our review, we have identified
eight distinct groups of contributions within this category. The
first two groups comprise studies that use preexisting methods
and architectures directly and with slight modifications, respec-
tively. The works in these two groups are notable for being
mostly focused on case studies or analysis of specific areas rather
than the development of new robust methodologies. However,
the performance these methods deliver is commendable, with
accuracy rates frequently around 80%. Moreover, among the
architectures used in these groups, while SegNet and ResNet are
noteworthy for their contributions, a clear preference emerges
for UNet, in most of the works of these groups [5], [119],
[172], [173], [174], [183], [184], [185], as a particularly popular
choice both for direct application and for the incorporation of
small modifications. This trend toward UNet, in comparison
to others, likely stems from its proven efficiency and effec-
tiveness in complex segmentation tasks, suggesting a strategic
move within the research community to leverage reliable and
established models to navigate the intricacies of LCC using
MSI. The remaining groups, following these two, transition from
contributions primarily focused on case studies to works that
propose new methodologies.

The next two groups within DL-based methods share sim-
ilarities as they involve AMs and Transformers, respectively.
Regarding AMs, the studies employing these techniques high-
light that AMs can be applied with different approaches, such as
channel level or spatial level, which allows for great versatility
and even the combination or stacking of several mechanisms
within the same framework. Notably, many works [190], [193],
[194], [195] base their proposed mechanisms on the SE net-
work. In addition, the performance reported by these studies
consistently remains in the range of 90% accuracy. The works
using Transformers inherently leverage the capabilities of visual
attention but at a more complex level. This group notably uses
Transformers primarily as feature extractors. Despite employing
various types of Transformers, the Swin Transformer stands out
slightly above the others due to its hierarchical extraction capa-
bilities [203], [204], [205], [212], [213]; furthermore, it is also
combined with other encoders for effective feature extraction. In
terms of performance, the contributions that use Transformers
demonstrate notable results, usually in the range of 90% or
higher.

21[Online]. Available: https://geospatial.trimble.com/en/products/software/
trimble-ecognition

https://geospatial.trimble.com/en/products/software/trimble-ecognition
https://geospatial.trimble.com/en/products/software/trimble-ecognition
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TABLE XIV
SUMMARY OF REVIEWED WORKS DETAILING SPECTRUM, DATA USED, AND KEY PERFORMANCE METRICS
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(CONTINUED)

This review also notes a consistent trend in leveraging multi-
scale information for LCC. Specifically, the use of ASPP mod-
ules has become prominent in many current contributions [17],
[31], [70], [160], [197], [219], [220], [221], [222], either through
their direct integration or by proposing modified versions. Other
works propose their own modules for the extraction or fusion of
multiscale information. In any case, the performance of these
approaches, like the previous groups, remains around 90%. The
use of edge/boundary information has also stood out among
the reviewed works. These studies primarily focus on leverag-
ing edge extraction information to improve segmentation and
achieve better differentiation between various land cover types.
Some approaches work at the encoder level [85], others at the
decoder level [192], [221], and some use edges as a guide [227],
[228], [229]. In any case, all of them utilize edge information

along with spatial and spectral data for their methodologies. The
performance of this group again positions itself around the 90%
threshold.

Another notable aspect is the inclusion of generative tech-
niques. These techniques address various problems with the
available data for training models and are even used as integrated
components in segmentation frameworks. The contributions in
this group use generative techniques to tackle issues such as
poor image resolution [230], [232] and the generation of syn-
thetic data to compensate for the scarcity of training data. This
generation ranges from MSI-like images [233], [234], [235],
[237] to other types of spectral information such as DSMs [239],
[240]. Regarding specific architectures, the use of conditional
approaches like CGAN stands out, but other methods like diffu-
sion models also appear, which have not yet been fully explored
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for LCC tasks, specifically using MSI, and represent an open
area of research.

Finally, the independent utilization of different types of in-
formation from MSI images emerges as a coherent approach,
aimed at leveraging the data in the best possible way. According
to the reviewed literature, these contributions primarily focus
on the feature extraction phase using one or more encoders for
determined groupings, usually groups of visible and nonvisible
bands [23], [196], [243], [244], [245], [246], [247]. In addition,
this methodology is also observed to exploit channel information
on the one hand and other types of spectral information such as
DSMs and nDSMs on the other hand [222], [248], [249], [250],
[251]. All these approaches are designed for more efficient and
effective use of MS information, rather than simply stacking
channels, which could lead to the loss of important information.
In terms of performance, there is a slightly varied behavior with
approaches closer to the 80% accuracy threshold, while others
exceed 90%. However, these types of contributions present
themselves as very promising approaches due to their design, and
they open multiple research avenues for developing frameworks
that fully leverage the different spectral information in the most
effective way.

B. Remarks on the Use of Nonvisible Bands for LCC

In this review, certain trends have been identified regarding
the use of nonvisible bands for the task of LCC. As previously
mentioned, our focus was solely on MSI of up to 36 bands.
Within this domain, the NIR band has been identified as the
most frequently used to enhance classification performance.
This band was used in all the studies reviewed, often accom-
panied by visible bands or others within the spectrum. This
widespread adoption suggests a recognition of the NIR band’s
unique capabilities in providing critical information that is not
captured by visible light. Enhancing features such as vegetation
vigor, moisture content, and other environmental markers, the
NIR band significantly contributes to the accuracy and depth of
classification outcomes. Its consistent use underscores the essen-
tial role that NIR and other nonvisible bands play in enriching
the data inputs for more effective and precise LCC. Furthermore,
many of the methodologies within this group are centered around
and evaluate their new methods using datasets that specifically
include the NIR band. This is further evidenced by the fact that
many studies, aiming to avoid increasing the number of channels
introduced into the network, prefer to discard other bands from
the visible spectrum and retain the NIR band. Specifically, it
was found that the blue band was most frequently omitted, with
the RG-NIR triplet emerging as one of the most commonly
used combinations, as can be seen in Table XIV. This selective
use of spectral bands underscores the strategic prioritization of
NIR due to its valuable contributions to enhancing classifica-
tion accuracy, while simultaneously streamlining the input data
to make the computational process more efficient. This focus
highlights the importance placed on the NIR band in current
research, recognizing its vital role in providing enhanced analyt-
ical capabilities that significantly improve the accuracy of LCC
models.

Besides the NIR band, other bands, such as the SWIR, RE,
and Thermal, were also explored, albeit less frequently accord-
ing to the findings of our review. These bands, while not as
predominantly utilized as NIR, still offer unique advantages for
specific applications within LCC. For instance, the SWIR band
is particularly effective in penetrating haze, fog, and smoke and
in differentiating between moisture levels of soil and vegetation.
Similarly, the RE band is known for its sensitivity to changes in
chlorophyll content, making it useful for monitoring vegetation
health. The Thermal band, on the other hand, is invaluable
for assessing temperature variations across landscapes, which
can be indicative of water stress in plants or the presence of
specific materials. Although these bands were not as commonly
employed as NIR, their selective use in certain studies not only
demonstrates their potential to provide supplementary informa-
tion but also indicates a growing integration into the field.

Similarly, the incorporation of additional information, such
as spectral indices and DSM, was also explored. Several studies
in this review integrated this additional information within their
contributions, even designating a specific branch for its process-
ing, as analyzed in previous sections. The inclusion of this type
of spectral information, as well as the methods for grouping, or
combining them, constitutes room for future research parallel to
the improvement of methods for processing them.

C. Insights Into Datasets and Image Acquisition for LCC

The trend and necessity of using aerial perspectives in LCC
make image acquisition unique and costly. Unlike other fields
where a common camera suffices, LCC requires specialized sen-
sors, adding complexity and expense. This impacts the logistical
and financial aspects of research and influences the accessibility
of conducting advanced LCC studies, potentially limiting them
to well-funded projects or institutions with the necessary techno-
logical infrastructure. Fortunately, technological advancements
in recent years have somewhat simplified the complexity of
acquiring the types of images used in LCC. As highlighted in
this review, there are now accessible satellite services that often
provide, sometimes free of charge, a wide range of tools for
downloading and even preprocessing MSI for various tasks. This
accessibility has significantly propelled this area of research,
enabling the development of mapping studies across diverse
regions and areas around the world that address a wide variety of
goals, including the mapping of mining zones, urban population
analysis, climate analysis, and more. This democratization of
data access has opened new avenues for researchers and practi-
tioners across the globe, enhancing the potential for innovative
studies and comprehensive environmental monitoring.

Moreover, the availability of imaging services also fuel
the creation of benchmark datasets within this domain. Such
datasets are a crucial tool in the development of new method-
ologies and architectures, as they establish a benchmark against
which new developments can be compared. In this review, we
have identified several benchmark datasets that have become
standards for the development and evaluation of new models,
many of which are constructed from images provided by satellite
services, such as the GID dataset. This availability not only
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streamlines research processes but also ensures a level of con-
sistency and comparability across studies, enhancing the overall
robustness and reliability of advancements in the field. This
field not only benefits from well-established datasets, but also
continues to see the development of newer, more comprehensive
datasets that offer greater richness and complexity. For instance,
the Catalonia Multiresolution Land Cover Dataset [252] is a
recent addition that encompasses 41 distinct land cover classes,
providing a detailed and diverse set of data for advanced analy-
sis. Similarly, the Five-Billion-Pixels dataset [253] represents
an expansion of the GID dataset, increasing from 15 to 24
classes, thus offering a more detailed and extensive resource
for model development. These are examples of how technology
provides solutions that enable access to increasingly better data,
which in turn supports the development of more sophisticated
and effective models. These developments not only enrich the
resources available to researchers but also enhance the scope
and depth of potential studies, driving forward the capabilities
of LCC techniques.

A small subset of studies within this review has adopted the
use of drones equipped with MS cameras to capture their own
datasets. This adoption highlights a burgeoning integration of
drone technology in the field of LCC, potentially simplifying
data acquisition processes. However, the limited number of such
studies could be attributed to the high costs associated with
MSI equipment. Moreover, the operational complexities and the
inherent limitations of drones, such as reduced coverage area
compared to satellites, further explain their sparse utilization.
Despite the advantages of flexibility and accessibility that drones
offer, the substantial costs, operational challenges, and coverage
limitations suggest that satellite imagery and the use of estab-
lished benchmarks are likely to remain predominant methods of
image capture in LCC for the foreseeable future.

Generative AI also emerges as a valuable tool for addressing
data availability limitations in LCC. These methods enable
the synthesis of high-fidelity, diverse, and extensive training
samples that enhance dataset quality and breadth. For instance,
GANs are used to generate synthetic MS images similar to
those from Sentinel [254] or SAR imagery [255], effectively
expanding the dataset while maintaining high relevance and
applicability to real-world scenarios. In addition, diffusion mod-
els, like Stable Diffusion [256], also demonstrate potential here
for dataset generation. Like GANs, diffusion models excel in
generating high-quality synthetic imagery but with a focus on
even more nuanced control over the generation process. Their
ability to create detailed and varied synthetic imagery supports
the expansion of data resources, facilitating more comprehensive
and nuanced analyses. This not only enhances data availability,
particularly in scenarios where traditional acquisition methods
are limited, but also fosters the development of more effective
and accurate classification techniques, paving the way for inno-
vative solutions in the face of evolving challenges in LCC.

X. REVIEW LIMITATIONS

One of the limitations of this review stems from the specificity
of the search query used. By focusing on the term “land cover”

for data extraction, there is a possibility that relevant studies that
do not explicitly differentiate between “land cover” and “land
use” may have been inadvertently excluded. This distinction is
often nuanced in the literature, and the overlap between these
two terms can vary significantly between studies. As a result,
our search criteria might have limited the scope of included
studies, potentially omitting valuable research that addresses
similar themes under a slightly different terminology or focus.

In addition, while this review intentionally focuses on the most
recent advancements, it inherently limits its scope to studies
published within the last few years. This temporal focus was
chosen under the assumption that earlier contributions have been
well documented in previous reviews. Although this approach
allows for a concentrated analysis of current trends and technolo-
gies, it may omit historical perspectives or foundational studies
that are still relevant today. We believe that focusing on recent
developments provides the most value given the rapid pace of
technological progress in this field, yet we acknowledge that this
choice narrows the breadth of historical context considered.

XI. CONCLUSION AND FUTURE WORK

This work assesses the latest trends and methodologies in
MSSS for LCC. The objective is to present an up-to-date
overview that reflects the current state of research, spanning var-
ious methodologies, image acquisition strategies, preprocessing
techniques, and evaluation criteria. In addition, it outlines po-
tential future directions that could further enhance the accuracy
and efficiency of land cover mapping, supporting the ongoing
evolution of the field.

In the analyzed methodologies, there is a discernible trend
toward the use of advanced DL technologies, which predominate
over traditional ML approaches. ML is particularly recurrent in
studies focused on analysis or case studies, while DL is geared
toward the development of new methodologies. Within DL, ap-
proaches based on AMs, Transformers, edge-based, multiscale,
generative, and independent spectral information processing are
particularly notable, providing contributions capable of deliver-
ing remarkable performance.

Regarding the use of spectral bands, this review identifies
the NIR band as the most frequently utilized beyond the classic
RGB. In addition, there are indications of the adoption of other
bands and spectra, such as RE, Thermal, and SWIR, suggesting
an expansion of studies to include a greater number of bands.
This trend highlights a growing interest in exploiting a broader
spectrum of data to enhance the accuracy and comprehensive-
ness of LCC. Although research using RGB images is founda-
tional, what is shown in this review highlights a growing interest
in exploiting a broader spectrum of data to enhance the accuracy
and comprehensiveness of LCC.

Regarding datasets and image acquisition, two dominant ap-
proaches are evident: the acquisition of satellite images, pri-
marily for specific studies, and the use of benchmark datasets.
Currently, there is a significant presence of satellite services that
facilitate access to and use of imagery, along with several solid
benchmark datasets that continue to support the development of
new methodologies. The future looks promising as the ease of
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access to these services not only enables data acquisition for spe-
cific studies but also supports the creation of new benchmarks.
In addition, there is a burgeoning incursion of drone systems
equipped with cameras for data capture. While these systems are
still limited and generally less refined compared to traditional
methods, their use is beginning to gain traction in the field.
Moreover, GANs and diffusion models are emerging as powerful
methods for data generation, presenting strong prospects for both
the present and future of LCC.

As a direction for future work, this review could be expanded
to cover additional domains such as HSI and land use analysis.
Exploring hyperspectral data could deepen the understanding
of LCC by utilizing its finer spectral resolution to capture
subtle differences in materials. Future research could focus on
comparing methodologies across these domains, identifying the
strengths and limitations of each approach in various contexts.
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