|
Records |
Links |
|
Author |
Patricia L. Suarez; Angel D. Sappa; Boris X. Vintimilla |
|
|
Title |
Cross-spectral image dehaze through a dense stacked conditional GAN based approach. |
Type |
Conference Article |
|
Year |
2018 |
Publication |
14th IEEE International Conference on Signal Image Technology & Internet based Systems (SITIS 2018) |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
358-364 |
|
|
Keywords |
|
|
|
Abstract |
This paper proposes a novel approach to remove haze from RGB images using a near infrared images based on a dense stacked conditional Generative Adversarial Network (CGAN). The architecture of the deep network implemented receives, besides the images with haze, its corresponding image in the near infrared spectrum, which serve to accelerate the learning process of the details of the characteristics of the images. The model uses a triplet layer that allows the independence learning of each channel of the visible spectrum image to remove the haze on each color channel separately. A multiple loss function scheme is proposed, which ensures balanced learning between the colors and the structure of the images. Experimental results have shown that the proposed method effectively removes the haze from the images. Additionally, the proposed approach is compared with a state of the art approach showing better results. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
gtsi @ user @ |
Serial |
92 |
|
Permanent link to this record |
|
|
|
|
Author |
Patricia L. Suarez; Angel D. Sappa; Boris X. Vintimilla; Riad I. Hammoud |
|
|
Title |
Deep Learning based Single Image Dehazing |
Type |
Conference Article |
|
Year |
2018 |
Publication |
14th IEEE Workshop on Perception Beyond the Visible Spectrum – In conjunction with CVPR 2018. Salt Lake City, Utah. USA |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
This paper proposes a novel approach to remove haze
degradations in RGB images using a stacked conditional
Generative Adversarial Network (GAN). It employs a triplet
of GAN to remove the haze on each color channel independently.
A multiple loss functions scheme, applied over a
conditional probabilistic model, is proposed. The proposed
GAN architecture learns to remove the haze, using as conditioned
entrance, the images with haze from which the clear
images will be obtained. Such formulation ensures a fast
model training convergence and a homogeneous model generalization.
Experiments showed that the proposed method
generates high-quality clear images. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
gtsi @ user @ |
Serial |
83 |
|
Permanent link to this record |
|
|
|
|
Author |
Patricia L. Suarez; Angel D. Sappa; Boris X. Vintimilla; Riad I. Hammoud |
|
|
Title |
Image Vegetation Index through a Cycle Generative Adversarial Network |
Type |
Conference Article |
|
Year |
2019 |
Publication |
Conference on Computer Vision and Pattern Recognition Workshops (CVPR 2019); Long Beach, California, United States |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
1014-1021 |
|
|
Keywords |
|
|
|
Abstract |
This paper proposes a novel approach to estimate the
Normalized Difference Vegetation Index (NDVI) just from
an RGB image. The NDVI values are obtained by using
images from the visible spectral band together with a synthetic near infrared image obtained by a cycled GAN. The
cycled GAN network is able to obtain a NIR image from
a given gray scale image. It is trained by using unpaired
set of gray scale and NIR images by using a U-net architecture and a multiple loss function (gray scale images are
obtained from the provided RGB images). Then, the NIR
image estimated with the proposed cycle generative adversarial network is used to compute the NDVI index. Experimental results are provided showing the validity of the proposed approach. Additionally, comparisons with previous
approaches are also provided. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
gtsi @ user @ |
Serial |
106 |
|
Permanent link to this record |
|
|
|
|
Author |
Patricia L. Suarez; Angel D. Sappa; Boris X. Vintimilla |
|
|
Title |
Vegetation Index Estimation from Monospectral Images |
Type |
Conference Article |
|
Year |
2018 |
Publication |
15th International Conference, Image Analysis and Recognition (ICIAR 2018), Póvoa de Varzim, Portugal. Lecture Notes in Computer Science |
Abbreviated Journal |
|
|
|
Volume |
10882 |
Issue |
|
Pages |
353-362 |
|
|
Keywords |
|
|
|
Abstract |
This paper proposes a novel approach to estimate Normalized
Difference Vegetation Index (NDVI) from just the red channel of
a RGB image. The NDVI index is defined as the ratio of the difference
of the red and infrared radiances over their sum. In other words, information
from the red channel of a RGB image and the corresponding
infrared spectral band are required for its computation. In the current
work the NDVI index is estimated just from the red channel by training a
Conditional Generative Adversarial Network (CGAN). The architecture
proposed for the generative network consists of a single level structure,
which combines at the final layer results from convolutional operations
together with the given red channel with Gaussian noise to enhance
details, resulting in a sharp NDVI image. Then, the discriminative model
estimates the probability that the NDVI generated index came from the
training dataset, rather than the index automatically generated. Experimental
results with a large set of real images are provided showing that
a Conditional GAN single level model represents an acceptable approach
to estimate NDVI index. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
gtsi @ user @ |
Serial |
82 |
|
Permanent link to this record |
|
|
|
|
Author |
Xavier Soria; Edgar Riba; Angel D. Sappa |
|
|
Title |
Dense Extreme Inception Network: Towards a Robust CNN Model for Edge Detection |
Type |
Conference Article |
|
Year |
2020 |
Publication |
2020 IEEE Winter Conference on Applications of Computer Vision (WACV) |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
9093290 |
Pages |
1912-1921 |
|
|
Keywords |
|
|
|
Abstract |
This paper proposes a Deep Learning based edge de- tector, which is inspired on both HED (Holistically-Nested Edge Detection) and Xception networks. The proposed ap- proach generates thin edge-maps that are plausible for hu- man eyes; it can be used in any edge detection task without previous training or fine tuning process. As a second contri- bution, a large dataset with carefully annotated edges, has been generated. This dataset has been used for training the proposed approach as well the state-of-the-art algorithms for comparisons. Quantitative and qualitative evaluations have been performed on different benchmarks showing im- provements with the proposed method when F-measure of ODS and OIS are considered. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
978-172816553-0 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
cidis @ cidis @ |
Serial |
126 |
|
Permanent link to this record |
|
|
|
|
Author |
Jorge Alvarez Tello; Mireya Zapata; Dennys Paillacho |
|
|
Title |
Kinematic optimization of a robot head movements for the evaluation of human-robot interaction in social robotics. |
Type |
Conference Article |
|
Year |
2019 |
Publication |
10th International Conference on Applied Human Factors and Ergonomics and the Affiliated Conferences (AHFE 2019), Washington D.C.; United States. Advances in Intelligent Systems and Computing |
Abbreviated Journal |
|
|
|
Volume |
975 |
Issue |
|
Pages |
108-118 |
|
|
Keywords |
|
|
|
Abstract |
This paper presents the simplification of the head movements from
the analysis of the biomechanical parameters of the head and neck at the
mechanical and structural level through CAD modeling and construction with
additive printing in ABS/PLA to implement non-verbal communication strategies and establish behavior patterns in the social interaction. This is using in the
denominated MASHI (Multipurpose Assistant robot for Social Human-robot
Interaction) experimental robotic telepresence platform, implemented by a
display with a fish-eye camera along with the mechanical mechanism, which
permits 4 degrees of freedom (DoF). In the development of mathematicalmechanical modeling for the kinematics codification that governs the robot and
the autonomy of movement, we have the Pitch, Roll, and Yaw movements, and
the combination of all of them to establish an active communication through
telepresence. For the computational implementation, it will be show the rotational matrix to describe the movement. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
yes |
|
|
Call Number |
gtsi @ user @ |
Serial |
108 |
|
Permanent link to this record |
|
|
|
|
Author |
Henry O. Velesaca, Steven Araujo, Patricia L. Suarez, Ángel Sanchez & Angel D. Sappa |
|
|
Title |
Off-the-Shelf Based System for Urban Environment Video Analytics. |
Type |
Conference Article |
|
Year |
2020 |
Publication |
The 27th International Conference on Systems, Signals and Image Processing (IWSSIP 2020) |
Abbreviated Journal |
|
|
|
Volume |
2020-July |
Issue |
9145121 |
Pages |
459-464 |
|
|
Keywords |
Greenhouse gases, carbon footprint, object detection, object tracking, website framework, off-the-shelf video analytics. |
|
|
Abstract |
This paper presents the design and implementation details of a system build-up by using off-the-shelf algorithms for urban video analytics. The system allows the connection to public video surveillance camera networks to obtain the necessary
information to generate statistics from urban scenarios (e.g., amount of vehicles, type of cars, direction, numbers of persons, etc.). The obtained information could be used not only for traffic management but also to estimate the carbon footprint of urban scenarios. As a case study, a university campus is selected to
evaluate the performance of the proposed system. The system is implemented in a modular way so that it is being used as a testbed to evaluate different algorithms. Implementation results are provided showing the validity and utility of the proposed approach. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
English |
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
21578672 |
ISBN |
978-172817539-3 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
cidis @ cidis @ |
Serial |
125 |
|
Permanent link to this record |
|
|
|
|
Author |
Rafael E. Rivadeneira, Angel D. Sappa, Boris X. Vintimilla, Jin Kim, Dogun Kim et al. |
|
|
Title |
Thermal Image Super-Resolution Challenge Results- PBVS 2022. |
Type |
Conference Article |
|
Year |
2022 |
Publication |
Computer Vision and Pattern Recognition Workshops, (CVPRW 2022), junio 19-24. |
Abbreviated Journal |
CONFERENCE |
|
|
Volume |
2022-June |
Issue |
|
Pages |
349-357 |
|
|
Keywords |
|
|
|
Abstract |
This paper presents results from the third Thermal Image
Super-Resolution (TISR) challenge organized in the Perception Beyond the Visible Spectrum (PBVS) 2022 workshop.
The challenge uses the same thermal image dataset as the
first two challenges, with 951 training images and 50 validation images at each resolution. A set of 20 images was
kept aside for testing. The evaluation tasks were to measure
the PSNR and SSIM between the SR image and the ground
truth (HR thermal noisy image downsampled by four), and
also to measure the PSNR and SSIM between the SR image
and the semi-registered HR image (acquired with another
camera). The results outperformed those from last year’s
challenge, improving both evaluation metrics. This year,
almost 100 teams participants registered for the challenge,
showing the community’s interest in this hot topic. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
cidis @ cidis @ |
Serial |
175 |
|
Permanent link to this record |
|
|
|
|
Author |
A. Amato; F. Lumbreras; Angel D. Sappa |
|
|
Title |
A general-purpose crowdsourcing platform for mobile devices |
Type |
Conference Article |
|
Year |
2014 |
Publication |
Computer Vision Theory and Applications (VISAPP), 2014 International Conference on, Lisbon, Portugal, 2014 |
Abbreviated Journal |
|
|
|
Volume |
3 |
Issue |
|
Pages |
211-215 |
|
|
Keywords |
Crowdsourcing Platform, Mobile Crowdsourcing |
|
|
Abstract |
This paper presents details of a general purpose micro-taskon-demand platform based on the crowdsourcing philosophy. This platformwas specifically developed for mobile devices in order to exploit the strengths of such devices; namely: i) massivity, ii) ubiquityand iii) embedded sensors.The combined use of mobile platforms and the crowdsourcing model allows to tackle from the simplest to the most complex tasks.Users experience is the highlighted feature of this platform (this fact is extended to both task-proposer and task- solver).Proper tools according with a specific task are provided to a task-solver in order to perform his/her job in a simpler, faster and appealing way.Moreover, a task can be easily submitted by just selecting predefined templates, which cover a wide range of possible applications.Examples of its usage in computer vision and computer games are provided illustrating the potentiality of the platform. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
IEEE |
Place of Publication |
Lisbon, Portugal |
Editor |
|
|
|
Language |
English |
Summary Language |
English |
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
Computer Vision Theory and Applications (VISAPP), 2014 International Conference on |
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
cidis @ cidis @ |
Serial |
25 |
|
Permanent link to this record |
|
|
|
|
Author |
Raul A. Mira; Patricia L. Suarez; Rafael E. Rivadeneira; Angel D. Sappa |
|
|
Title |
PETRA: A Crowdsourcing-Based Platform for Rocks Data Collection and Characterization |
Type |
Conference Article |
|
Year |
2019 |
Publication |
IEEE ETCM 2019 Fourth Ecuador Technical Chapters Meeting; Guayaquil, Ecuador |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
1-6 |
|
|
Keywords |
|
|
|
Abstract |
This paper presents details of a distributed platform intended for data acquisition, evaluation, storage and visualization, which is fully implemented under the crowdsourcing paradigm. The proposed platform is the result from collaboration between computer science and petrology researchers and it is intended for academic purposes. The platform is designed within a MTV (Model, Template and View) architecture and also designed for a collaborative data store and managing of rocks from multiple readers and writers, taking advantage of ubiquity of web applications, and neutrality of researchers from different
communities to validate the data. The platform is being used and validated by students and academics from our university; in the near future it will be open to other users interested on this topic. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
gtsi @ user @ |
Serial |
112 |
|
Permanent link to this record |