|
Records |
Links |
|
Author |
Gisel Bastidas G., Patricio Moreno V., Boris Vintimilla & Angel D. Sappa |
|
|
Title |
Application-Guided Image Fusion: A Path to Improve Results in High-Level Vision Tasks |
Type |
Journal Article |
|
Year |
2025 |
Publication |
20th International Conference on Computer Vision Theory and Applications VISAPP 2025 |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract  |
|
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
cidis @ cidis @ |
Serial |
266 |
|
Permanent link to this record |
|
|
|
|
Author |
Henry O. Velesaca, Angel D. Sappa & Juan A. Holgado |
|
|
Title |
A Case Study of Anomaly Detection in Tinplate Lids: Supervised vs Unsupervised approaches |
Type |
Journal Article |
|
Year |
2025 |
Publication |
11th International Conference on Automation, Robotics, and Applications (ICARA 2025) |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract  |
|
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
cidis @ cidis @ |
Serial |
267 |
|
Permanent link to this record |
|
|
|
|
Author |
Henry O. Velesaca & Angel D. Sappa |
|
|
Title |
Seeing the Unseen: AI-Powered Camouflaged Pest Detection |
Type |
Journal Article |
|
Year |
2025 |
Publication |
9th International Conference on Machine Vision and Information Technology (CMVIT 2025) |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract  |
|
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
cidis @ cidis @ |
Serial |
268 |
|
Permanent link to this record |
|
|
|
|
Author |
Constantine Macías A., Toala Paz A., Realpe Miguel, Suárez Moncada Jenifer, Páez Rosas Diego & Jarrín Enrique Peláez |
|
|
Title |
Leveraging Deep Learning Techniques for Marine and Coastal Wildlife Using Instance Segmentation: A Study on Galápagos Sea Lions |
Type |
Journal Article |
|
Year |
2024 |
Publication |
In 8th Ecuador Technical Chapters Meeting (ETCM 2024) Cuenca, October 15 – October 18, 2024 |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract  |
|
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
cidis @ cidis @ |
Serial |
269 |
|
Permanent link to this record |
|
|
|
|
Author |
Leo Thomas Ramos & Angel D. Sappa |

|
|
Title |
Leveraging U-Net and selective feature extraction for land cover classification using remote sensing imagery |
Type |
Journal Article |
|
Year |
2025 |
Publication |
Scientific Reports |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract  |
|
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
cidis @ cidis @ |
Serial |
270 |
|
Permanent link to this record |
|
|
|
|
Author |
Miguel Oliveira; Vítor Santos; Angel D. Sappa; Paulo Dias; A. Paulo Moreira |

|
|
Title |
Incremental Texture Mapping for Autonomous Driving |
Type |
Journal Article |
|
Year |
2016 |
Publication |
Robotics and Autonomous Systems Journal |
Abbreviated Journal |
|
|
|
Volume |
Vol. 84 |
Issue |
|
Pages |
pp. 113-128 |
|
|
Keywords |
Scene reconstruction, Autonomous driving, Texture mapping |
|
|
Abstract  |
Autonomous vehicles have a large number of on-board sensors, not only for providing coverage all around the vehicle, but also to ensure multi-modality in the observation of the scene. Because of this, it is not trivial to come up with a single, unique representation that feeds from the data given by all these sensors. We propose an algorithm which is capable of mapping texture collected from vision based sensors onto a geometric description of the scenario constructed from data provided by 3D sensors. The algorithm uses a constrained Delaunay triangulation to produce a mesh which is updated using a specially devised sequence of operations. These enforce a partial configuration of the mesh that avoids bad quality textures and ensures that there are no gaps in the texture. Results show that this algorithm is capable of producing fine quality textures. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
English |
Summary Language |
English |
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
cidis @ cidis @ |
Serial |
50 |
|
Permanent link to this record |
|
|
|
|
Author |
Ma. Paz Velarde; Erika Perugachi; Dennis G. Romero; Ángel D. Sappa; Boris X. Vintimilla |

|
|
Title |
Análisis del movimiento de las extremidades superiores aplicado a la rehabilitación física de una persona usando técnicas de visión artificial. |
Type |
Journal Article |
|
Year |
2015 |
Publication |
Revista Tecnológica ESPOL-RTE |
Abbreviated Journal |
|
|
|
Volume |
Vol. 28 |
Issue |
|
Pages |
pp. 1-7 |
|
|
Keywords |
Rehabilitation; RGB-D Sensor; Computer Vision; Upper limb |
|
|
Abstract  |
Comúnmente durante la rehabilitación física, el diagnóstico dado por el especialista se basa en observaciones cualitativas que sugieren, en algunos casos, conclusiones subjetivas. El presente trabajo propone un enfoque cuantitativo, orientado a servir de ayuda a fisioterapeutas, a través de una herramienta interactiva y de bajo costo que permite medir los movimientos de miembros superiores. Estos movimientos son capturados por un sensor RGB-D y procesados mediante la metodología propuesta, dando como resultado una eficiente representación de movimientos, permitiendo la evaluación cuantitativa de movimientos de los miembros superiores. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
ESPOL |
Place of Publication |
|
Editor |
|
|
|
Language |
English |
Summary Language |
English |
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
cidis @ cidis @ |
Serial |
39 |
|
Permanent link to this record |
|
|
|
|
Author |
Marjorie Chalen; Boris X. Vintimilla |

|
|
Title |
Towards Action Prediction Applying Deep Learning |
Type |
Journal Article |
|
Year |
2019 |
Publication |
Latin American Conference on Computational Intelligence (LA-CCI); Guayaquil, Ecuador; 11-15 Noviembre 2019 |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
pp. 1-3 |
|
|
Keywords |
action prediction, early recognition, early detec- tion, action anticipation, cnn, deep learning, rnn, lstm. |
|
|
Abstract  |
Considering the incremental development future action prediction by video analysis task of computer vision where it is done based upon incomplete action executions. Deep learning is playing an important role in this task framework. Thus, this paper describes recently techniques and pertinent datasets utilized in human action prediction task. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
cidis @ cidis @ |
Serial |
129 |
|
Permanent link to this record |
|
|
|
|
Author |
Cristhian A. Aguilera, Cristhian Aguilera, Cristóbal A. Navarro, & Angel D. Sappa |

|
|
Title |
Fast CNN Stereo Depth Estimation through Embedded GPU Devices |
Type |
Journal Article |
|
Year |
2020 |
Publication |
Sensors 2020 |
Abbreviated Journal |
|
|
|
Volume |
Vol. 2020-June |
Issue |
11 |
Pages |
pp. 1-13 |
|
|
Keywords |
stereo matching; deep learning; embedded GPU |
|
|
Abstract  |
Current CNN-based stereo depth estimation models can barely run under real-time
constraints on embedded graphic processing unit (GPU) devices. Moreover, state-of-the-art
evaluations usually do not consider model optimization techniques, being that it is unknown what is
the current potential on embedded GPU devices. In this work, we evaluate two state-of-the-art models
on three different embedded GPU devices, with and without optimization methods, presenting
performance results that illustrate the actual capabilities of embedded GPU devices for stereo depth
estimation. More importantly, based on our evaluation, we propose the use of a U-Net like architecture
for postprocessing the cost-volume, instead of a typical sequence of 3D convolutions, drastically
augmenting the runtime speed of current models. In our experiments, we achieve real-time inference
speed, in the range of 5–32 ms, for 1216 368 input stereo images on the Jetson TX2, Jetson Xavier,
and Jetson Nano embedded devices. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
English |
Summary Language |
English |
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
14248220 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
cidis @ cidis @ |
Serial |
132 |
|
Permanent link to this record |
|
|
|
|
Author |
Miguel Realpe; Boris X. Vintimilla; Ljubo Vlacic |

|
|
Title |
Multi-sensor Fusion Module in a Fault Tolerant Perception System for Autonomous Vehicles |
Type |
Journal Article |
|
Year |
2016 |
Publication |
Journal of Automation and Control Engineering (JOACE) |
Abbreviated Journal |
|
|
|
Volume |
Vol. 4 |
Issue |
|
Pages |
pp. 430-436 |
|
|
Keywords |
Fault Tolerance, Data Fusion, Multi-sensor Fusion, Autonomous Vehicles, Perception System |
|
|
Abstract  |
Driverless vehicles are currently being tested on public roads in order to examine their ability to perform in a safe and reliable way in real world situations. However, the long-term reliable operation of a vehicle’s diverse sensors and the effects of potential sensor faults in the vehicle system have not been tested yet. This paper is proposing a sensor fusion architecture that minimizes the influence of a sensor fault. Experimental results are presented simulating faults by introducing displacements in the sensor information from the KITTI dataset. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
English |
Summary Language |
English |
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
cidis @ cidis @ |
Serial |
51 |
|
Permanent link to this record |