|
Xavier Soria, Edgar Riba, & Angel D. Sappa. (2020). Dense Extreme Inception Network: Towards a Robust CNN Model for Edge Detection. In 2020 IEEE Winter Conference on Applications of Computer Vision (WACV) (pp. 1912–1921).
Abstract: This paper proposes a Deep Learning based edge de- tector, which is inspired on both HED (Holistically-Nested Edge Detection) and Xception networks. The proposed ap- proach generates thin edge-maps that are plausible for hu- man eyes; it can be used in any edge detection task without previous training or fine tuning process. As a second contri- bution, a large dataset with carefully annotated edges, has been generated. This dataset has been used for training the proposed approach as well the state-of-the-art algorithms for comparisons. Quantitative and qualitative evaluations have been performed on different benchmarks showing im- provements with the proposed method when F-measure of ODS and OIS are considered.
|
|
|
Benítez-Quintero J., Q. - P. O., Calderon, Fernanda. (2022). Notes on Sulfur Fluxes in Urban Areas with Industrial Activity. In 20th LACCEI International Multi-Conference for Engineering, Education Caribbean Conference for Engineering and Technology, LACCEI 2022, (Vol. 2022-July).
|
|
|
Patricia L. Suarez, Angel D. Sappa, Boris X. Vintimilla, & Riad I. Hammoud. (2018). Near InfraRed Imagery Colorization. In 25 th IEEE International Conference on Image Processing, ICIP 2018.
Abstract: This paper proposes a stacked conditional Generative
Adversarial Network-based method for Near InfraRed
(NIR) imagery colorization. We propose a variant architecture
of Generative Adversarial Network (GAN) that uses multiple
loss functions over a conditional probabilistic generative model.
We show that this new architecture/loss-function yields better
generalization and representation of the generated colored IR
images. The proposed approach is evaluated on a large test
dataset and compared to recent state of the art methods using
standard metrics.1
Index Terms—Convolutional Neural Networks (CNN), Generative
Adversarial Network (GAN), Infrared Imagery colorization.
|
|
|
Mehri, A., Ardakani, P.B., Sappa, A.D. (2021). LiNet: A Lightweight Network for Image Super Resolution. In 25th International Conference on Pattern Recognition (ICPR), enero 10-15, 2021 (pp. 7196–7202).
|
|
|
Patricia L. Suarez, Angel D. Sappa, & Boris X. Vintimilla. (2017). Learning Image Vegetation Index through a Conditional Generative Adversarial Network. In 2nd IEEE Ecuador Tehcnnical Chapters Meeting (ETCM).
|
|
|
Jorge Alvarez, Mireya Zapata, & Dennys Paillacho. (2019). Mechanical Design of a spatial mechanism for the robot head movements in social robotics for the evaluation of Human-Robot Interaction. In 2nd International Conference on Human Systems Engineering and Design: Future Trends and Applications (IHSED 2019); Munich, Alemania.
|
|
|
Mildred Cruz, Cristhian A. Aguilera, Boris X. Vintimilla, Ricardo Toledo, & Ángel D. Sappa. (2015). Cross-spectral image registration and fusion: an evaluation study. In 2nd International Conference on Machine Vision and Machine Learning (Vol. 331). Barcelona, Spain: Computer Vision Center.
Abstract: This paper presents a preliminary study on the registration and fusion of cross-spectral imaging. The objective is to evaluate the validity of widely used computer vision approaches when they are applied at different spectral bands. In particular, we are interested in merging images from the infrared (both long wave infrared: LWIR and near infrared: NIR) and visible spectrum (VS). Experimental results with different data sets are presented.
|
|
|
Miguel Realpe, Boris X. Vintimilla, & Ljubo Vlacic. (2015). Sensor Fault Detection and Diagnosis for autonomous vehicles. In 2nd International Conference on Mechatronics, Automation and Manufacturing (ICMAM 2015), International Conference on, Singapur, 2015 (Vol. 30, pp. 1–6). EDP Sciences.
Abstract: In recent years testing autonomous vehicles on public roads has become a reality. However, before having autonomous vehicles completely accepted on the roads, they have to demonstrate safe operation and reliable interaction with other traffic participants. Furthermore, in real situations and long term operation, there is always the possibility that diverse components may fail. This paper deals with possible sensor faults by defining a federated sensor data fusion architecture. The proposed architecture is designed to detect obstacles in an autonomous vehicle’s environment while detecting a faulty sensor using SVM models for fault detection and diagnosis. Experimental results using sensor information from the KITTI dataset confirm the feasibility of the proposed architecture to detect soft and hard faults from a particular sensor.
|
|
|
Miguel Realpe, Boris X. Vintimilla, & Ljubo Vlacic. (2016). A Fault Tolerant Perception system for autonomous vehicles. In 35th Chinese Control Conference (CCC2016), International Conference on, Chengdu (pp. 1–6).
Abstract: Driverless vehicles are currently being tested on public roads in order to examine their ability to perform in a safe and reliable way in real world situations. However, the long-term reliable operation of a vehicle’s diverse sensors and the effects of potential sensor faults in the vehicle system have not been tested yet. This paper is proposing a sensor fusion architecture that minimizes the influence of a sensor fault. Experimental results are presented simulating faults by introducing displacements in the sensor information from the KITTI dataset.
|
|
|
Wilton Agila, Ricardo Cajo, & Douglas Plaza. (2015). Experts Agents in PEM Fuel Cell Control. In 4ta International Conference on Renewable Energy Research and Applications (pp. 896–900). Palermo, Italy: IEEE.
Abstract: In the control of the PEM (Proton Exchange Membrane) fuel cell, the existence of both deliberative and reactive processes that facilitate the tasks of control resulting from a wide range of operating scenarios and range of conditions it is required. The latter is essential to adjust its parameters to the multiplicity of circumstances that may occur in the operation of the PEM stack. In this context, the design and development of an expert-agents based architecture for autonomous control of the PEM stack in top working conditions is presented. The architecture integrates perception and control algorithms using sensory and context information. It is structured in a hierarchy of levels with different time window and level of abstraction. The monitoring model and autonomic control of PEM stack has been validated with different types of PEM stacks and operating conditions demonstrating high reliability in achieving the objective of the proposed energy efficiency. Dynamic control of the wetting of the membrane is a clear example.
|
|