toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links (down)
Author Dennis G. Romero; Anselmo Frizera N.; Teodiano Freire B. pdf  url
openurl 
  Title Reconocimiento en-l?nea de acciones humanas basado en patrones de RWE aplicado en ventanas dinámicas de momentos invariantes Type Journal Article
  Year 2014 Publication Revista Iberoamericana de Automática e Informática industrial 00 (2014) Abbreviated Journal  
  Volume 11 Issue Pages 202-211  
  Keywords Vision por ordenador, Mapas de profundidad, Reconocimiento de acciones humanas, Relative Wavelet Energy, Distancia de ´ Mahalanobis  
  Abstract Durante los últimos años ha existido un fuerte incremento en el acceso a internet, causando que los centros de datos (DC) deban adaptar dinámicamente su infraestructura de red de cara a enfrentar posibles problemas de congestión, la cual no siempre se da de forma oportuna. Ante esto, nuevas topologías de red se han propuesto en los últimos años, como una forma de brindar mejores condiciones para el manejo de tráfico interno, sin embargo es común que para el estudio de estas mejoras, se necesite recrear el comportamiento de un verdadero DC en modelos de simulación/emulación. Por lo tanto se vuelve esencial validar dichos modelos, de cara a obtener resultados coherentes con la realidad. Esta validación es posible por medio de la identificación de ciertas propiedades que se deducen a partir de las variables y los parámetros que describen la red, y que se mantienen en las topologías de los DC para diversos escenarios y/o configuraciones. Estas propiedades, conocidas como invariantes, son una expresión del funcionamiento de la red en ambientes reales, como por ejemplo la ruta más larga entre dos nodos o el número de enlaces mínimo que deben fallar antes de una pérdida de conectividad en alguno de los nodos de la red. En el presente trabajo se realiza la identificación, formulación y comprobación de dos invariantes para la topología Fat-Tree, utilizando como software emulador a mininet. Las conclusiones muestran resultados concordantes entre lo analítico y lo práctico.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Español Summary Language Español Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number cidis @ cidis @ Serial 30  
Permanent link to this record
 

 
Author Daniela Rato, Miguel Oliviera, Victor Santos, Manuel Gomes & Angel Sappa url  openurl
  Title A Sensor-to-Pattern Calibration Framework for Multi-Modal Industrial Collaborative Cells. Type Journal Article
  Year 2022 Publication Journal of Manufacturing Systems Abbreviated Journal  
  Volume Vol. 64 Issue Pages pp 497 – 507  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number cidis @ cidis @ Serial 184  
Permanent link to this record
 

 
Author Xavier Soria, Angel Sappa, Patricio Humanante, Arash Akbarinia url  openurl
  Title Type Journal Article
  Year 2023 Publication Dense extreme inception network for edge detection. Pattern Recognition, Vol. 139, 109461 Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number cidis @ cidis @ Serial 216  
Permanent link to this record
 

 
Author Patricia L. Suárez, Angel D. Sappa and Boris X. Vintimilla url  openurl
  Title Deep learning-based vegetation index estimation Type Book Chapter
  Year 2021 Publication Generative Adversarial Networks for Image-to-Image Translation Book. (Chapter 9, Issue 2, pp. 205-232) Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number cidis @ cidis @ Serial 137  
Permanent link to this record
 

 
Author Carlos Monsalve; Alain April; Alain Abran pdf  url
openurl 
  Title BPM and requirements elicitation at multiple levels of abstraction: A review Type Conference Article
  Year 2011 Publication IADIS International Conference on Information Systems 2011 Abbreviated Journal  
  Volume Issue Pages 237-242  
  Keywords Business process modeling, levels of abstraction, requirements elicitation, requirements modeling, review  
  Abstract Business process models can be useful for requirements elicitation, among other things. Software development depends on the quality of the requirements elicitation activities, and so adequately modeling business processes (BPs) is critical. A key factor in achieving this is the active participation of all the stakeholders in the development of a shared vision of BPs.

Unfortunately, organizations often find themselves left with inconsistent BPs that do not cover all the stakeholders’ needs

and constraints. However, consolidation of the various stakeholder requirements may be facilitated through the use of multiple levels of abstraction (MLA). This article contributes to the research into MLA use in business process modeling (BPM) for software requirements by reviewing the theoretical foundations of MLA and their use in various BP-oriented approaches.
 
  Address CIDIS-FIEC, Escuela Superior Politécnica del Litoral (ESPOL) Km. 30.5 vía Perimetral,  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number cidis @ cidis @ Serial 15  
Permanent link to this record
 

 
Author Rafael E. Rivadeneira, Angel Domingo Sappa, Vintimilla B. X. and Hammoud R. url  openurl
  Title A Novel Domain Transfer-Based Approach for Unsupervised Thermal Image Super- Resolution. Type Journal Article
  Year 2022 Publication In Sensors. Abbreviated Journal In Sensors  
  Volume Vol. 22 Issue Issue 6 Pages Article number 2254  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number cidis @ cidis @ Serial 170  
Permanent link to this record
 

 
Author Miguel Realpe; Boris X. Vintimilla; Ljubo Vlacic pdf  url
openurl 
  Title Sensor Fault Detection and Diagnosis for autonomous vehicles Type Conference Article
  Year 2015 Publication 2nd International Conference on Mechatronics, Automation and Manufacturing (ICMAM 2015), International Conference on, Singapur, 2015 Abbreviated Journal  
  Volume 30 Issue MATEC Web of Conferences Pages 1-6  
  Keywords  
  Abstract In recent years testing autonomous vehicles on public roads has become a reality. However, before having autonomous vehicles completely accepted on the roads, they have to demonstrate safe operation and reliable interaction with other traffic participants. Furthermore, in real situations and long term operation, there is always the possibility that diverse components may fail. This paper deals with possible sensor faults by defining a federated sensor data fusion architecture. The proposed architecture is designed to detect obstacles in an autonomous vehicle’s environment while detecting a faulty sensor using SVM models for fault detection and diagnosis. Experimental results using sensor information from the KITTI dataset confirm the feasibility of the proposed architecture to detect soft and hard faults from a particular sensor.  
  Address  
  Corporate Author Thesis  
  Publisher EDP Sciences Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number cidis @ cidis @ Serial 42  
Permanent link to this record
 

 
Author Velesaca, Henry O.; Suárez, Patricia L.; Sappa, Angel D.; Carpio, Dario; Rivadeneira, Rafael E.; Sanchez, Angel url  openurl
  Title Review on Common Techniques for Urban Environment Video Analytics. Type Conference Article
  Year 2022 Publication In WORKSHOP BRASILEIRO DE CIDADES INTELIGENTES (WBCI 2022) Abbreviated Journal  
  Volume Issue Porto Alegre: Sociedade Brasileira de Computação Pages 107-118  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number cidis @ cidis @ Serial 192  
Permanent link to this record
 

 
Author Rafael E. Rivadeneira, Angel D. Sappa, Boris X. Vintimilla, Jin Kim, Dogun Kim et al. pdf  url
openurl 
  Title Thermal Image Super-Resolution Challenge Results- PBVS 2022. Type Conference Article
  Year 2022 Publication Computer Vision and Pattern Recognition Workshops, (CVPRW 2022), junio 19-24. Abbreviated Journal CONFERENCE  
  Volume 2022-June Issue Pages 349 - 357  
  Keywords  
  Abstract This paper presents results from the third Thermal Image

Super-Resolution (TISR) challenge organized in the Perception Beyond the Visible Spectrum (PBVS) 2022 workshop.

The challenge uses the same thermal image dataset as the

first two challenges, with 951 training images and 50 validation images at each resolution. A set of 20 images was

kept aside for testing. The evaluation tasks were to measure

the PSNR and SSIM between the SR image and the ground

truth (HR thermal noisy image downsampled by four), and

also to measure the PSNR and SSIM between the SR image

and the semi-registered HR image (acquired with another

camera). The results outperformed those from last year’s

challenge, improving both evaluation metrics. This year,

almost 100 teams participants registered for the challenge,

showing the community’s interest in this hot topic.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number cidis @ cidis @ Serial 175  
Permanent link to this record
 

 
Author Low S., Inkawhich N., Nina O., Sappa A. and Blasch E. pdf  url
openurl 
  Title Multi-modal Aerial View Object Classification Challenge Results-PBVS 2022. Type Conference Article
  Year 2022 Publication Conference on Computer Vision and Pattern Recognition Workshops, (CVPRW 2022), junio 19-24. Abbreviated Journal CONFERENCE  
  Volume 2022-June Issue Pages 417 - 425  
  Keywords  
  Abstract This paper details the results and main findings of the

second iteration of the Multi-modal Aerial View Object

Classification (MAVOC) challenge. This year’s MAVOC

challenge is the second iteration. The primary goal of

both MAVOC challenges is to inspire research into methods for building recognition models that utilize both synthetic aperture radar (SAR) and electro-optical (EO) input

modalities. Teams are encouraged/challenged to develop

multi-modal approaches that incorporate complementary

information from both domains. While the 2021 challenge

showed a proof of concept that both modalities could be

used together, the 2022 challenge focuses on the detailed

multi-modal models. Using the same UNIfied COincident

Optical and Radar for recognitioN (UNICORN) dataset and

competition format that was used in 2021. Specifically, the

challenge focuses on two techniques, (1) SAR classification

and (2) SAR + EO classification. The bulk of this document is dedicated to discussing the top performing methods

and describing their performance on our blind test set. Notably, all of the top ten teams outperform our baseline. For

SAR classification, the top team showed a 129% improvement over our baseline and an 8% average improvement

from the 2021 winner. The top team for SAR + EO classification shows a 165% improvement with a 32% average

improvement over 2021.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number cidis @ cidis @ Serial 177  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: