|
Records |
Links |
|
Author |
Miguel Oliveira; Vítor Santos; Angel D. Sappa; Paulo Dias |

|
|
Title |
Scene representations for autonomous driving: an approach based on polygonal primitives |
Type |
Conference Article |
|
Year |
2015 |
Publication |
Iberian Robotics Conference (ROBOT 2015), Lisbon, Portugal, 2015 |
Abbreviated Journal |
|
|
|
Volume |
417 |
Issue |
|
Pages  |
503-515 |
|
|
Keywords |
Scene reconstruction, Point cloud, Autonomous vehicles |
|
|
Abstract |
In this paper, we present a novel methodology to compute a 3D scene representation. The algorithm uses macro scale polygonal primitives to model the scene. This means that the representation of the scene is given as a list of large scale polygons that describe the geometric structure of the environment. Results show that the approach is capable of producing accurate descriptions of the scene. In addition, the algorithm is very efficient when compared to other techniques. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Springer International Publishing Switzerland 2016 |
Place of Publication |
|
Editor |
|
|
|
Language |
English |
Summary Language |
English |
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
Second Iberian Robotics Conference |
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
cidis @ cidis @ |
Serial |
45 |
|
Permanent link to this record |
|
|
|
|
Author |
Jorge L. Charco; Angel D. Sappa; Boris X. Vintimilla; Henry O. Velesaca |

|
|
Title |
Transfer Learning from Synthetic Data in the Camera Pose Estimation Problem |
Type |
Conference Article |
|
Year |
2020 |
Publication |
The 15th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2020); Valletta, Malta; 27-29 Febrero 2020 |
Abbreviated Journal |
|
|
|
Volume |
4 |
Issue |
|
Pages  |
498-505 |
|
|
Keywords |
Relative Camera Pose Estimation, Siamese Architecture, Synthetic Data, Deep Learning, Multi-View Environments, Extrinsic Camera Parameters. |
|
|
Abstract |
This paper presents a novel Siamese network architecture, as a variant of Resnet-50, to estimate the relative camera pose on multi-view environments. In order to improve the performance of the proposed model
a transfer learning strategy, based on synthetic images obtained from a virtual-world, is considered. The
transfer learning consist of first training the network using pairs of images from the virtual-world scenario
considering different conditions (i.e., weather, illumination, objects, buildings, etc.); then, the learned weight
of the network are transferred to the real case, where images from real-world scenarios are considered. Experimental results and comparisons with the state of the art show both, improvements on the relative pose
estimation accuracy using the proposed model, as well as further improvements when the transfer learning
strategy (synthetic-world data – transfer learning – real-world data) is considered to tackle the limitation on
the training due to the reduced number of pairs of real-images on most of the public data sets. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
978-989758402-2 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
gtsi @ user @ |
Serial |
120 |
|
Permanent link to this record |
|
|
|
|
Author |
Daniela Rato, Miguel Oliviera, Victor Santos, Manuel Gomes & Angel Sappa |

|
|
Title |
A Sensor-to-Pattern Calibration Framework for Multi-Modal Industrial Collaborative Cells. |
Type |
Journal Article |
|
Year |
2022 |
Publication |
Journal of Manufacturing Systems |
Abbreviated Journal |
|
|
|
Volume |
Vol. 64 |
Issue |
|
Pages  |
pp 497 – 507 |
|
|
Keywords |
|
|
|
Abstract |
|
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
yes |
|
|
Call Number |
cidis @ cidis @ |
Serial |
184 |
|
Permanent link to this record |
|
|
|
|
Author |
Rivadeneira, Rafael E.; Sappa, Angel D. and Vintimilla Boris X. |

|
|
Title |
Thermal Image Super-Resolution: A Novel Unsupervised Approach. |
Type |
Book Chapter |
|
Year |
2022 |
Publication |
Communications in Computer and Information Science, 15th International Communications in Computer and Information Science Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications |
Abbreviated Journal |
BOOK |
|
|
Volume |
1474 CCIS |
Issue |
|
Pages  |
pp 495 – 506 |
|
|
Keywords |
|
|
|
Abstract |
|
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
cidis @ cidis @ |
Serial |
179 |
|
Permanent link to this record |
|
|
|
|
Author |
Henry O. Velesaca, Steven Araujo, Patricia L. Suarez, Ángel Sanchez & Angel D. Sappa |

|
|
Title |
Off-the-Shelf Based System for Urban Environment Video Analytics. |
Type |
Conference Article |
|
Year |
2020 |
Publication |
The 27th International Conference on Systems, Signals and Image Processing (IWSSIP 2020) |
Abbreviated Journal |
|
|
|
Volume |
2020-July |
Issue |
9145121 |
Pages  |
459-464 |
|
|
Keywords |
Greenhouse gases, carbon footprint, object detection, object tracking, website framework, off-the-shelf video analytics. |
|
|
Abstract |
This paper presents the design and implementation details of a system build-up by using off-the-shelf algorithms for urban video analytics. The system allows the connection to public video surveillance camera networks to obtain the necessary
information to generate statistics from urban scenarios (e.g., amount of vehicles, type of cars, direction, numbers of persons, etc.). The obtained information could be used not only for traffic management but also to estimate the carbon footprint of urban scenarios. As a case study, a university campus is selected to
evaluate the performance of the proposed system. The system is implemented in a modular way so that it is being used as a testbed to evaluate different algorithms. Implementation results are provided showing the validity and utility of the proposed approach. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
English |
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
21578672 |
ISBN |
978-172817539-3 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
cidis @ cidis @ |
Serial |
125 |
|
Permanent link to this record |
|
|
|
|
Author |
Rafael E. Rivadeneira; Angel D. Sappa; Boris X. Vintimilla; Lin Guo; Jiankun Hou; Armin Mehri; Parichehr Behjati; Ardakani Heena Patel; Vishal Chudasama; Kalpesh Prajapati; Kishor P. Upla; Raghavendra Ramachandra; Kiran Raja; Christoph Busch; Feras Almasri; Olivier Debeir; Sabari Nathan; Priya Kansal; Nolan Gutierrez; Bardia Mojra; William J. Beksi |

|
|
Title |
Thermal Image Super-Resolution Challenge – PBVS 2020 |
Type |
Conference Article |
|
Year |
2020 |
Publication |
The 16th IEEE Workshop on Perception Beyond the Visible Spectrum on the Conference on Computer Vision and Pattern Recongnition (CVPR 2020) |
Abbreviated Journal |
|
|
|
Volume |
2020-June |
Issue |
9151059 |
Pages  |
432-439 |
|
|
Keywords |
|
|
|
Abstract |
This paper summarizes the top contributions to the first challenge on thermal image super-resolution (TISR) which was organized as part of the Perception Beyond the Visible Spectrum (PBVS) 2020 workshop. In this challenge, a novel thermal image dataset is considered together with stateof-the-art approaches evaluated under a common framework.
The dataset used in the challenge consists of 1021 thermal images, obtained from three distinct thermal cameras at different resolutions (low-resolution, mid-resolution, and high-resolution), resulting in a total of 3063 thermal images. From each resolution, 951 images are used for training and 50 for testing while the 20 remaining images are used for two proposed evaluations. The first evaluation consists of downsampling the low-resolution, midresolution, and high-resolution thermal images by x2, x3 and x4 respectively, and comparing their super-resolution
results with the corresponding ground truth images. The second evaluation is comprised of obtaining the x2 superresolution from a given mid-resolution thermal image and comparing it with the corresponding semi-registered highresolution thermal image. Out of 51 registered participants, 6 teams reached the final validation phase. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
English |
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
21607508 |
ISBN |
978-172819360-1 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
cidis @ cidis @ |
Serial |
123 |
|
Permanent link to this record |
|
|
|
|
Author |
Miguel Realpe; Boris X. Vintimilla; Ljubo Vlacic |

|
|
Title |
Multi-sensor Fusion Module in a Fault Tolerant Perception System for Autonomous Vehicles |
Type |
Journal Article |
|
Year |
2016 |
Publication |
Journal of Automation and Control Engineering (JOACE) |
Abbreviated Journal |
|
|
|
Volume |
4 |
Issue |
|
Pages  |
430-436 |
|
|
Keywords |
Fault Tolerance, Data Fusion, Multi-sensor Fusion, Autonomous Vehicles, Perception System |
|
|
Abstract |
Driverless vehicles are currently being tested on public roads in order to examine their ability to perform in a safe and reliable way in real world situations. However, the long-term reliable operation of a vehicle’s diverse sensors and the effects of potential sensor faults in the vehicle system have not been tested yet. This paper is proposing a sensor fusion architecture that minimizes the influence of a sensor fault. Experimental results are presented simulating faults by introducing displacements in the sensor information from the KITTI dataset. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
English |
Summary Language |
English |
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
cidis @ cidis @ |
Serial |
51 |
|
Permanent link to this record |
|
|
|
|
Author |
Low S., Inkawhich N., Nina O., Sappa A. and Blasch E. |

|
|
Title |
Multi-modal Aerial View Object Classification Challenge Results-PBVS 2022. |
Type |
Conference Article |
|
Year |
2022 |
Publication |
Conference on Computer Vision and Pattern Recognition Workshops, (CVPRW 2022), junio 19-24. |
Abbreviated Journal |
CONFERENCE |
|
|
Volume |
2022-June |
Issue |
|
Pages  |
417 - 425 |
|
|
Keywords |
|
|
|
Abstract |
This paper details the results and main findings of the
second iteration of the Multi-modal Aerial View Object
Classification (MAVOC) challenge. This year’s MAVOC
challenge is the second iteration. The primary goal of
both MAVOC challenges is to inspire research into methods for building recognition models that utilize both synthetic aperture radar (SAR) and electro-optical (EO) input
modalities. Teams are encouraged/challenged to develop
multi-modal approaches that incorporate complementary
information from both domains. While the 2021 challenge
showed a proof of concept that both modalities could be
used together, the 2022 challenge focuses on the detailed
multi-modal models. Using the same UNIfied COincident
Optical and Radar for recognitioN (UNICORN) dataset and
competition format that was used in 2021. Specifically, the
challenge focuses on two techniques, (1) SAR classification
and (2) SAR + EO classification. The bulk of this document is dedicated to discussing the top performing methods
and describing their performance on our blind test set. Notably, all of the top ten teams outperform our baseline. For
SAR classification, the top team showed a 129% improvement over our baseline and an 8% average improvement
from the 2021 winner. The top team for SAR + EO classification shows a 165% improvement with a 32% average
improvement over 2021. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
cidis @ cidis @ |
Serial |
177 |
|
Permanent link to this record |
|
|
|
|
Author |
Steven Silva, Dennys Paillacho., David Soque, María Guerra & Jonathan Paillacho |

|
|
Title |
Autonomous Intelligent Navigation For Mobile Robots In Closed Environments. |
Type |
Conference Article |
|
Year |
2021 |
Publication |
The 2nd International Conference on Applied Technologies (ICAT 2020), diciembre 2-4. Communications in Computer and Information Science |
Abbreviated Journal |
|
|
|
Volume |
1388 |
Issue |
|
Pages  |
391-402 |
|
|
Keywords |
|
|
|
Abstract |
|
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
cidis @ cidis @ |
Serial |
187 |
|
Permanent link to this record |
|
|
|
|
Author |
Rangnekar,Aneesha; Mulhollan,Zachary; Vodacek,Anthony; Hoffman,Matthew; Sappa,Angel D.; Yu,Jun et al. |

|
|
Title |
Semi-Supervised Hyperspectral Object Detection Challenge Results-PBVS 2022. |
Type |
Conference Article |
|
Year |
2022 |
Publication |
Conference on Computer Vision and Pattern Recognition Workshops, (CVPRW 2022), junio 19-24. |
Abbreviated Journal |
CONFERENCE |
|
|
Volume |
2022-June |
Issue |
|
Pages  |
389 - 397 |
|
|
Keywords |
|
|
|
Abstract |
|
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
cidis @ cidis @ |
Serial |
176 |
|
Permanent link to this record |