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1Escuela Superior Politécnica del Litoral, ESPOL, Guayaquil, Ecuador
2Computer Vision Center, Campus UAB, Bellaterra, Barcelona, Spain
3TuSimple, 9191 Towne Centre Dr, STE 600, San Diego, CA, USA

Abstract

This paper proposes a novel approach to estimate the
Normalized Difference Vegetation Index (NDVI) just from
an RGB image. The NDVI values are obtained by using
images from the visible spectral band together with a syn-
thetic near infrared image obtained by a cycled GAN. The
cycled GAN network is able to obtain a NIR image from
a given gray scale image. It is trained by using unpaired
set of gray scale and NIR images by using a U-net archi-
tecture and a multiple loss function (gray scale images are
obtained from the provided RGB images). Then, the NIR
image estimated with the proposed cycle generative adver-
sarial network is used to compute the NDVI index. Experi-
mental results are provided showing the validity of the pro-
posed approach. Additionally, comparisons with previous
approaches are also provided.

1. Introduction

Computer Vision techniques are widely used to estimate

the quantity, quality and development of the vegetation.

These estimations are based on the measurement of radi-

ation’s intensity of certain bands from the electromagnetic

spectrum that vegetation emits or reflects. There are some

solutions that use images of different spectra, therefore, sen-

sors sensitive to each of them are needed. In the particular

case of current work, which is focussed on NDVI vegeta-

tion index, registered images of the visible spectrum and

infrared are needed. In other words, we need two sensors,

which acquire the images at the same time from the same

scene, in order to calculate the values of eq.(1). This re-

quirement makes any solution that deals with the use of

this vegetation index more expensive since it is necessary

to invest in cameras sensitive to the near infrared spectrum,

or a bigger platform (e.g., drone) to install all the required

sensors. The current paper addresses the challenge of esti-

mating the NDVI index by using an RGB image and a syn-

thetically generated NIR image. In other words, it is only

necessary to have just a sensor sensitive to the visible spec-

trum.

A vegetation index is a single value that quantifies veg-

etation health or structure. The math associated with cal-

culating a vegetation index is derived from the physics of

light reflection and absorption across bands. For instance,

it is known that healthy vegetation reflects light strongly in

the near infrared band and less strongly in the visible por-

tion of the spectrum. Thus, a ratio between light reflected in

the near infrared and light reflected in the visible spectrum

will represent areas that potentially have healthy vegetation.

The more a plant absorbs visible sunlight (during the grow-

ing season), the more photosynthesis and more productive

it is. Conversely, the less sunlight absorbs the plant, the less

photosynthesis and less productive it is. Higher-end image

processing techniques are proposed by [12], to investigate

the strength of key spectral vegetation indexes for agricul-

tural crop yield prediction using neural network in order to

increase agricultural production.

Among the different indexes proposed in the literature,

the Normalized Difference Vegetation Index (NDVI) is the

most widely used [14]; NDVI is often used to monitor

drought, forecast agricultural production, assist in forecast-

ing fire zones and desert offensive maps. NDVI is prefer-

able for global vegetation monitoring since it helps to com-

pensate for changes in lighting conditions, surface slope ex-

posure, and other external factors. In general, it is used to

determine the condition, developmental stages and biomass

of cultivated plants and to forecasts their yields. This index

is calculated as the ratio between the difference and sum of

the reflectance in NIR and red regions:

NVDI =
RNIR −RRED

RNIR +RRED

, (1)

where RNIR is the reflectance of NIR radiation and RRED is

the reflectance of visible red radiation.

According to this formula, the density of vegetation at a

certain point of the image is equal to the difference in the

intensities of reflected light in the red and infrared range
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divided by the sum of these intensities. This index defines

values from -1.0 to 1.0, basically representing greens, where

negative values are mainly formed from clouds, water and

snow, and values close to zero are primarily formed from

rocks and bare soil. Very small values (0.1 or less) of the

NDVI function correspond to empty areas of rocks, sand or

snow. Moderate values (from 0.2 to 0.3) represent shrubs

and meadows, while large values (from 0.6 to 0.8) indicate

temperate and tropical forests.

In summary, NDVI is a measure of the health of a plant

based on how the plant reflects light at certain frequencies

(some waves are absorbed and others are reflected). Chloro-

phyll (a health indicator) strongly absorbs visible light, and

the cellular structure of the leaves strongly reflect near-

infrared light. When the plant becomes dehydrated, sick,

affected with disease, etc., the spongy layer deteriorates,

and the plant absorbs more of the near-infrared light, rather

than reflecting it. Thus, observing how NIR changes com-

pared to red light provides an accurate indication of the

presence of chlorophyll, which correlates with plant health.

Recent studies have demonstrated the usefulness of optical

indexes from hyperspectral or cross-spectral remote sensing

in the assessment of vegetation biophysical variables both in

forestry and agriculture [22], [1]. Those indexes are, how-

ever, the combined response to variations of several vegeta-

tion and environmental properties, such as Leaf Area Index

(LAI), leaf chlorophyll content, canopy shadows, and back-

ground soil reflectance [7].

Cross/multi-spectral computer vision approaches pro-

vide unique solutions to multiple complex problems, how-

ever, as mentioned above, different preprocessing steps

need to be implemented before computing these solutions;

hence, in the current work we present a novel approach to

obtain a NDVI image, but just using information from a sin-

gle spectral band. Actually, a similar technique has been re-

cently presented in [17] where vegetation index is estimated

based on a learning model using only a single near infrared

spectral band image. Although interesting results have been

obtained, the weakness point of that approach lies on the

need of having NIR images, which are not that much com-

mon like visible spectrum images. In the current work we

propose to explore the possibility to estimate NDVI vege-

tation index using images from the visible spectrum. The

index is estimated from a learning based approach, where

a Cycle Generative Adversarial Network (CycleGAN) is

trained with a large data set. Additionally, a more elab-

orated loss function is proposed to preserve details of the

estimated NIR images, which are used later on to obtain the

vegetation index NDVI. In our approach, a set of unpaired

images are used as input, one for visible spectrum and the

other from the NIR spectrum, each one is fed into a Cycle-

GAN to obtain a synthetic NIR image, using a multiple loss

function, a residual network (RESNET) architecture is used

to go deeper without degradation in accuracy and error rate.

The manuscript is organized as follows. Section 2 presents

works related to the NDVI index problems, as well as the

basic concepts and notation of GAN and CycleGAN net-

works. The proposed approach is detailed in section 3. The

experimental results with a set of real images are presented

in section 4. Finally, the conclusions are given in section 5.

2. Related Work
Solutions based on computer vision to tackle problems

related to precision agriculture have been widely used. This

technology enables better identification, analysis, and man-

agement of this temporal and spatial in-field variability. The

aforementioned precision, is all about reducing this vari-

ability through more focused and targeted efforts which

should increase production by maintaining crop quality and

quantity [13]. Remote sensing in precision agriculture

makes use of sensors and vegetation indexes [15]. Nor-

mally, vegetation index is calculated using different spec-

tral bands, usually depending on what type of information

is trying to be obtained. In this particular case of this work

the NDVI vegetation index is estimated. Lately, in this field

of study, many traditional techniques or convolutional neu-

ral networks based solutions have been proposed.

In [4], Filippa et al. has proposed a time series of vege-

tation indexes (e.g., normalized difference vegetation index

[NDVI]) and color indexes (e.g., green chromatic coordi-

nate [GCC]) based on radiometric measurements by means

of near-surface remote sensing (e.g., spectral sensors or dig-

ital cameras) to describe ecosystem phenology. Zheng et

al. [23] propose a method using a stepwise cluster analysis

(SCA), to address and represent the complex and nonlin-

ear relations between climatic factors and NDVI. Accord-

ingly, the knowledge of vegetation dynamics in response to

climate change would need to be further reflected and ex-

panded. In [20], Testa et al. has proposed a technique to

monitoring forest phenology, which allows to study the ef-

fects of climate change on vegetated land surfaces, in or-

der to find the best VI/TS combination to estimate start-of-

season (SOS) and end-of-season (EOS) dates across 50 tem-

perate deciduous forests. In [5] the author has proposed the

use of the MODIS sensors that appears to be appropriate for

identifying landscape patterns, time series, change detec-

tion maps, and the potential impacts from climate change

for each area of study. These patterns of vegetation types

can be inventoried at a 250m resolution and monitored at

a high temporal resolution. In [21] the authors have pro-

posed a method to predict the habitat quality of protected

dry grasslands using Landsat NDVI phenology, in order to

infer a representation of local productivity and management

pattern.

Recently, Generative Adversarial Network based learn-

ing techniques have been used obtaining appealing results;
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Figure 1. Cycle Generative Adversarial model implemented on the current work to estimate the NIR representation.

actually, in most of the cases they are among the best op-

tions, (e.g., see [2]). These (GAN) networks are becoming

the dominant tool to tackle most of computer vision prob-

lems. GANs are powerful and flexible tools, one of their

most common application is image generation. In the GAN

framework [6], generative models are estimated via an ad-

versarial process, in which simultaneously two models are

trained: i) a generative model G that captures the data dis-

tribution, and ii) a discriminative model D that estimates

the probability that a sample came from the training data

rather than G. The training procedure for G is to maximize

the probability of D making a mistake. In this architec-

ture it is possible to apply certain conditions to improve

the learning process. According to [11], to learn the gen-

erators distribution pg over data x, the generator builds a

mapping function from a prior noise distribution pz(z) to

a data space G(z; θg). The discriminator, D(x; θd), out-

puts a single scalar representing the probability that x came

from training data rather than pg . G and D are both trained

simultaneously, the parameters for G are adjusted to min-

imize log(1 − D(G(z))) and for D to minimize logD(x).
Some works are presented on [16], [18] for image coloriza-

tion or [19] for vegetation index estimation. In [9] Isola

et al. have proposed a conditional adversarial network as

a general-purpose solution to image-to-image translation

problems. This network not only learns the mapping from

input image to output image, but also learns a loss func-

tion to train this mapping. This makes it possible to ap-

ply the same generic approach to problems that traditionally

would require very different loss formulations. Then, new

approaches are presented that allow learning to translate be-

tween domains without examples of paired input-output. In

[24] the authors present a system that can learn to capture

special characteristics of one image collection and figuring

out how these characteristics could be translated into the

other image collection, all in the absence of any paired train-

ing examples, converting an image from one representation

of a given scene, x, to another, y, e.g., grayscale to color,

image to semantic labels, edge-map to photograph.

3. Proposed Approach

This section presents the approach proposed for NDVI

index vegetation estimation just with a single image from

the visible spectrum. As mentioned above, it uses a similar

architecture like the one proposed on [24], a recent work for

unpaired image to image translation, where the usage of a

cycle generative adversarial network (CycleGAN) has been

proposed. CycleGANs is a convenient method for image-

to-image translation problems, such as style transfer, be-

cause it just rely on an unconstrained input set and output set

rather than specific corresponding input/output pairs. This

could be time-consuming, unfeasible, or even impossible

based on what two image types are being trying to trans-

late between. Another approach presented in [9] has shown

results synthesizing photos from label maps, reconstructing

objects from edge maps, but still dependent on some kind

of correlated labeling.

Our architecture is based on the approach presented in

[24] in relation to cycle consistent learning and loss func-

tions; in our work it is used to estimate the synthetic NIR

images. The proposed model can learn to translate the im-
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ages between the visible spectrum to their corresponding

NIR spectrum, without the need to have accurately regis-

tered RGB/NIR pairs. This allows us to use these NIR syn-

thetic images in the calculation of the NDVI vegetation in-

dex and to be able to use them in solutions oriented to solve

problems related to the state of the crops and their corre-

sponding level of productivity in the crops. Another advan-

tage of being able to count on the synthetic images of the

NIR spectrum is that, undoubtedly, the costs of the solu-

tions are decreased since there is no need to buy acquisition

devices sensitive to that electromagnetic spectrum. Addi-

tionally, our architecture uses Residual Network (ResNET)

[8] to perform the image transformation from one spectrum

to another. It avoids the vanishing gradient problem, as

the gradient is back-propagated to earlier layers, repeated

multiplication may make the gradient infinitely small. As

a result, as the network goes deeper, its performance can

get saturated or even starts degrading rapidly. To avoid all

this problems, we implement our generator and discrimina-

tor to propagate larger gradients to initial layers and these

layers also could learn as fast as the final layers, giving us

the ability to train deeper networks. Resnet is a model de-

signed to be applied in a deep neural network layer architec-

ture, which consists of convolution layers known as build-

ing block, where a residue of input is added to the output.

The core idea of ResNet is to introduce a so-called iden-

tity shortcut connection that skips one or more layers. These

skip connections ensure properties of NIR images of previ-

ous layers are available for later layers as well, so that their

output do not deviate much from original RGB input, oth-

erwise the characteristics of original images will not be re-

tained in the output and results will be very unreal. Figure 1

depicts the CycleGAN model proposed in the current work.

As can be appreciated in Figure 1, CycleGan architecture

to generate NIR synthetic images is composed of two gen-

erators G, F and two discriminators Dx, Dy. In order to

generate a synthetic image, the architecture takes the ad-

vantage from the joint of cycle-consistency and least square

losses [10] in addition to the usual discriminator and gener-

ator losses. The results of the experiments have shown that

these loss functions demand that the model maintain textu-

ral information of the visible and NIR images and generate

uniform synthetic outputs. According with [24] the objec-

tive of a CycleGAN is to learn mapping functions between

two domains X and Y given training samples xi
N
i=1 ∈ X

and xi
N
i=1 ∈ Y .

The model includes two mappings functions G : X →
Y and F : Y → X . In addition, it introduces two adver-

sarial discriminators Dx and Dy , where Dx aims to distin-

guish between images x and translated images F (y); in the

same way, Dy aims to discriminate between y and G(x).
Besides, the proposed approach includes two types of loss

terms: adversarial losses [6] for matching the distribution

of generated synthetic NIR images to the data distribution

in the target domain real NIR images; and a cycle consis-

tency loss to prevent the learned mappings G and F from

contradicting each other. The adversarial losses according

to [6] to both mapping functions. For the mapping function

G : X → Y its discriminator Dy , is defined as:

LGAN (G,Dy, X, Y ) = Ey∼p data(y)[logDY (y)] + (2)

Ex ∼p data(x)[log(1−DY (G(x)))],

where G tries to generate images G(x) that look similar

to images from domain Y , while Dy aims to distinguish

between translated samples G(x) and real samples y.

For the mapping function F : Y → X its discriminator

Dx, is defined as:

LGAN (F,Dx, Y,X) = Ex∼p data(x)[logDX(x)] + (3)

Ey ∼p data(y)[log(1−DX(G(y)))],

where F tries to generate images F (y) that look similar to

images from domain X , while Dx aims to distinguish be-

tween translated samples F (y) and real samples x.

Also, according to [24], to reduce the space of possi-

ble mapping functions, they argue that the learned mapping

functions should be cycle-consistent, for each image x from

domain X , the image translation cycle should be able to

bring x back to the original image, i.e., x → F (G(x)) →
G(x) ≈ x, calling this forward cycle consistency. There-

fore, for each image y from domain Y , G and F should also

satisfy backward cycle consistency: y→ F (y)→G(F (y))
≈ y. This cycle consistency loss is defined as :

Lcycle(G,F ) = Ex∼p data(x)[‖F (G(x))− x‖1] + (4)

Ey ∼p data(y)[‖G(F (y))− y‖1].

A least square loss has been implemented [10] to accel-

erate the training process. This loss is able to move the fake

samples toward the decision boundary, in other words, gen-

erate samples that are closer to real data, in our case the

synthetic NIR image. The experiments performed with this

loss instead of negative log likelihood shown better results.

The equations (2) and (3) are replaced with the least square

losses, which are defined as :

LLSGAN (G,Dy, X, Y ) = Ey∼p data(y)[(DY (y)− 1)2] +
(5)

Ex ∼p data(x)[DY (G(x))2],

Once the NIR image is estimated the NDVI index is com-

puted by using eq. (1) together with the information from

the red channel of the given image.
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Figure 2. Illustration of NIR images obtained by the proposed CycleGAN, which are later on used to estimate the corresponding NDVI

indexes. (1st.row) RGB images. (2nd.row) Gray scale image used as input into the CycleGAN. (3rd.row) Estimated NIR images.

(4th.row) Ground truth NIR images. Images from [3], country, field and mountain categories.

4. Experimental Results

The proposed approach, see Fig. 1, has been evaluated

using NIR and RGB images obtained from eq. (1), in which

the RGB red channel was used; the cross-spectral data set

used in our implementation came from [3]. This dataset

consists of 477 registered images categorized into 9 groups

captured in RGB (visible) and NIR (Near Infrared) spec-

tral bands. The country, mountain and field categories have

been considered for evaluating the performance of the pro-

posed approach, examples of this dataset are presented in

Fig. 2. The country category contains 52 pairs of images

of (1024×680 pixels), mountain category contains 55 pairs

of images of (1024×680 pixels), while the field contains 51

pairs of images of (1024×680 pixels). In order to increase

the training dataset a data augmentation process was per-

formed, to improve the accuracy of our network to generate
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Figure 3. Images of NDVI vegetation indexes obtained with the synthetic NIR generated by the proposed CycleGAN. (top) Ground truth

NDVI vegetation index images. (bottom) Estimated NDVI vegetation indexes. Images from [3], country, field and mountain categories.

synthetic NIR images. The data augmentation consists of

applying flipping, rotating and transposing over the origi-

nal images. After the data augmentation process, for each

category 600 pairs of images from visible and NIR spec-

trum have been generated. Additionally, for each category

40 pairs of images for testing and 20 pairs of images for

validation from visible and NIR spectrum have been used.

It is important to emphasize that despite the images are reg-

istered, for the CycleGAN training process of our model,

which estimates the synthetic NIR image, we use unpaired

images.

On average, every training process took about 80 hours

using a 3.2 GHz eight core processor with 32GB of memory

with a NVIDIA TITAN XP GPU. Some illustrations, with

the corresponding NIR results obtained with the proposed

CycleGAN approach are depicted in Fig. 2 for qualitative

evaluation.

Results from the Cycle Generative Adversarial network

(synthetic NIR images) are then used for estimating the

NDVI indexes. Figure 3 presents some illustrations of

NDVI indexes estimated from these NIR images and the

ground truth ones computed from eq. (1). Quantitative

evaluations are presented in Table 1. In this table aver-

age root mean square error (RMSE) and structural simi-

larity index metric (SSIM) computed over the validation

set are depicted, when different combinations of the pro-

posed loss functions where considered. Our experiments

used the standard loss function for GANs, which are based

on negative log likelihood and also used the least square

loss, which obtain better quantitative results and avoid the

vanishing gradient problem, where a deep feed-forward net-

work is unable to propagate valid gradient information from

the output back to the first layer of the model. We imple-

ment least square loss to accelerate and maintain stable the

training process. Additionally, in this table, results from

[19] are presented. It can be appreciated that in all the cases

the results obtained with the least square loss in the pro-

posed CycleGAN are better than those obtained with the

approach presented in [19]. It should be mentioned that the

least square losses permits to accelerate the network con-

vergence, allowing a better optimization of the network.

To increase the cyclic loss effect over the network we

used L1 (λ). The CycleGAN network proposed has been

trained using Stochastic AdamOptimazer since it is well

suited for problems with deep network, large datasets and

avoid overfitting. The image dataset was normalized in

a (-1,1) range and rescaled to 256x256 to avoid memory

problems during the training process. The following hyper-

parameters were used during the training process: learning

rate 0.0003; epsilon = 1e-08; exponential decay rate for the

1st moment momentum 0.6; L1 (λ) 10.5; weight decay 1e-

2; leak relu 0.20.

5. Conclusions

This paper tackles the challenging problem of generat-

ing NDVI vegetation index using a NIR synthetic image

and their corresponding RGB representation. NIR images
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Table 1. Average Root Mean Squared Errors (RMSE) and Structural Similarities (SSIM) obtained from the estimated NDVI vegetation

index and the real one computed from eq. (1) (SSIM the bigger the better). Note NDVI values are scaled up to a range of [0-255] since

they are depicted as images as shown in Fig. 3

Training RMSE SSIM

country field mountain country field mountain
Results from [19] 3.53 3.70 – 0.94 0.91 –

NDVI estimation with synthectic NIR LCycleGan 3.42 3.64 3.63 0.94 0.91 0.86

NDVI estimation with synthectic NIR LCycleGan + LLsGan 3.39 3.56 3.81 0.94 0.92 0.89

are estimated by using a CycleGan network. Results have

shown that in most of the cases the network is able to ob-

tain reliable synthectic NIR representations that can be used

to obtain vegetation indexes. As mentioned in the discus-

sion section, this approach has not the limitation of needing

paired NIR-RGB images for training. As a future work, ac-

tually, as work in progress we are considering the usage of

a CycleGAN architecture with continual learning with deep

generative display, but feed it with RGB and their corre-

sponding NIR image in the generator to speed up the gen-

eralization. Future work will also consider other loss func-

tions to improve the training process.
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