toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
  Record Links
Author (up) Patricia L. Suarez; Angel D. Sappa; Boris X. Vintimilla pdf  openurl
  Title Image patch similarity through a meta-learning metric based approach Type Conference Article
  Year 2019 Publication 15th International Conference on Signal Image Technology & Internet based Systems (SITIS 2019); Sorrento, Italia Abbreviated Journal  
  Volume Issue Pages 511-517  
  Abstract Comparing images regions are one of the core methods used on computer vision for tasks like image classification, scene understanding, object detection and recognition. Hence, this paper proposes a novel approach to determine similarity of image regions (patches), in order to obtain the best representation of image patches. This problem has been studied by many researchers presenting different approaches, however, the ability to find the better criteria to measure the similarity on image regions are still a challenge. The present work tackles this problem using a few-shot metric based meta-learning framework able to compare image regions and determining a similarity measure to decide if there is similarity between the compared patches. Our model is training end-to-end from scratch. Experimental results

have shown that the proposed approach effectively estimates the similarity of the patches and, comparing it with the state of the art approaches, shows better results.
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number gtsi @ user @ Serial 115  
Permanent link to this record
Select All    Deselect All
 |   | 

Save Citations:
Export Records: