|
Records |
Links |
|
Author |
Rafael E. Rivadeneira, Angel D. Sappa, Boris X. Vintimilla, Jin Kim, Dogun Kim et al. |

|
|
Title |
Thermal Image Super-Resolution Challenge Results- PBVS 2022. |
Type |
Conference Article |
|
Year |
2022 |
Publication  |
Computer Vision and Pattern Recognition Workshops, (CVPRW 2022), junio 19-24. |
Abbreviated Journal |
CONFERENCE |
|
|
Volume |
2022-June |
Issue |
|
Pages |
349-357 |
|
|
Keywords |
|
|
|
Abstract |
This paper presents results from the third Thermal Image
Super-Resolution (TISR) challenge organized in the Perception Beyond the Visible Spectrum (PBVS) 2022 workshop.
The challenge uses the same thermal image dataset as the
first two challenges, with 951 training images and 50 validation images at each resolution. A set of 20 images was
kept aside for testing. The evaluation tasks were to measure
the PSNR and SSIM between the SR image and the ground
truth (HR thermal noisy image downsampled by four), and
also to measure the PSNR and SSIM between the SR image
and the semi-registered HR image (acquired with another
camera). The results outperformed those from last year’s
challenge, improving both evaluation metrics. This year,
almost 100 teams participants registered for the challenge,
showing the community’s interest in this hot topic. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
cidis @ cidis @ |
Serial |
175 |
|
Permanent link to this record |
|
|
|
|
Author |
Patricia L. Suarez; Angel D. Sappa; Boris X. Vintimilla; Riad I. Hammoud |

|
|
Title |
Image Vegetation Index through a Cycle Generative Adversarial Network |
Type |
Conference Article |
|
Year |
2019 |
Publication  |
Conference on Computer Vision and Pattern Recognition Workshops (CVPR 2019); Long Beach, California, United States |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
1014-1021 |
|
|
Keywords |
|
|
|
Abstract |
This paper proposes a novel approach to estimate the
Normalized Difference Vegetation Index (NDVI) just from
an RGB image. The NDVI values are obtained by using
images from the visible spectral band together with a synthetic near infrared image obtained by a cycled GAN. The
cycled GAN network is able to obtain a NIR image from
a given gray scale image. It is trained by using unpaired
set of gray scale and NIR images by using a U-net architecture and a multiple loss function (gray scale images are
obtained from the provided RGB images). Then, the NIR
image estimated with the proposed cycle generative adversarial network is used to compute the NDVI index. Experimental results are provided showing the validity of the proposed approach. Additionally, comparisons with previous
approaches are also provided. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
gtsi @ user @ |
Serial |
106 |
|
Permanent link to this record |
|
|
|
|
Author |
Nayeth I. Solorzano Alcivar, Robert Loor, Stalyn Gonzabay Yagual, & Boris X. Vintimilla |

|
|
Title |
Statistical Representations of a Dashboard to Monitor Educational Videogames in Natural Language |
Type |
Conference Article |
|
Year |
2020 |
Publication  |
ETLTC – ACM Chapter: International Conference on Educational Technology, Language and Technical Communication; Fukushima, Japan, 27-31 Enero 2020 |
Abbreviated Journal |
|
|
|
Volume |
77 |
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
This paper explains how Natural Language (NL) processing by computers, through smart
programs as a way of Machine Learning (ML), can represent large sets of quantitative data as written
statements. The study recognized the need to improve the implemented web platform using a
dashboard in which we collected a set of extensive data to measure assessment factors of using
children´s educational games. In this case, applying NL is a strategy to give assessments, build, and
display more precise written statements to enhance the understanding of children´s gaming behavior.
We propose the development of a new tool to assess the use of written explanations rather than a
statistical representation of feedback information for the comprehension of parents and teachers with
a lack of primary level knowledge in statistics. Applying fuzzy logic theory, we present verbatim
explanations of children´s behavior playing educational videogames as NL interpretation instead of
statistical representations. An educational series of digital game applications for mobile devices,
identified as MIDI (Spanish acronym of “Interactive Didactic Multimedia for Children”) linked to a
dashboard in the cloud, is evaluated using the dashboard metrics. MIDI games tested in local primary
schools helps to evaluate the results of using the proposed tool. The guiding results allow analyzing
the degrees of playability and usability factors obtained from the data produced when children play a
MIDI game. The results obtained are presented in a comprehensive guiding evaluation report
applying NL for parents and teachers. These guiding evaluations are useful to enhance children's
learning understanding related to the school curricula applied to ludic digital games. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
cidis @ cidis @ |
Serial |
131 |
|
Permanent link to this record |
|
|
|
|
Author |
Patricia L. Suárez, Angel D. Sappa and Boris X. Vintimilla |

|
|
Title |
Deep learning-based vegetation index estimation |
Type |
Book Chapter |
|
Year |
2021 |
Publication  |
Generative Adversarial Networks for Image-to-Image Translation Book. |
Abbreviated Journal |
|
|
|
Volume |
Chapter 9 |
Issue |
Issue 2 |
Pages |
205-232 |
|
|
Keywords |
|
|
|
Abstract |
|
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
cidis @ cidis @ |
Serial |
137 |
|
Permanent link to this record |
|
|
|
|
Author |
Julien Poujol; Cristhian A. Aguilera; Etienne Danos; Boris X. Vintimilla; Ricardo Toledo; Angel D. Sappa |

|
|
Title |
A visible-Thermal Fusion based Monocular Visual Odometry |
Type |
Conference Article |
|
Year |
2015 |
Publication  |
Iberian Robotics Conference (ROBOT 2015), International Conference on, Lisbon, Portugal, 2015 |
Abbreviated Journal |
|
|
|
Volume |
417 |
Issue |
|
Pages |
517-528 |
|
|
Keywords |
Monocular Visual Odometry; LWIR-RGB cross-spectral Imaging; Image Fusion |
|
|
Abstract |
The manuscript evaluates the performance of a monocular visual odometry approach when images from different spectra are considered, both independently and fused. The objective behind this evaluation is to analyze if classical approaches can be improved when the given images, which are from different spectra, are fused and represented in new domains. The images in these new domains should have some of the following properties: i) more robust to noisy data; ii) less sensitive to changes (e.g., lighting); iii) more rich in descriptive information, among other. In particular in the current work two different image fusion strategies are considered. Firstly, images from the visible and thermal spectrum are fused using a Discrete Wavelet Transform (DWT) approach. Secondly, a monochrome threshold strategy is considered. The obtained representations are evaluated under a visual odometry framework, highlighting their advantages and disadvantages, using different urban and semi-urban scenarios. Comparisons with both monocular-visible spectrum and monocular-infrared spectrum, are also provided showing the validity of the proposed approach. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
English |
Summary Language |
English |
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
cidis @ cidis @ |
Serial |
44 |
|
Permanent link to this record |
|
|
|
|
Author |
Jorge L. Charco, Angel D. Sappa, Boris X. Vintimilla, Henry O. Velesaca. |

|
|
Title |
Human Body Pose Estimation in Multi-view Environments. |
Type |
Book Chapter |
|
Year |
2022 |
Publication  |
ICT Applications for Smart Cities Part of the Intelligent Systems Reference Library book series |
Abbreviated Journal |
BOOK |
|
|
Volume |
224 |
Issue |
|
Pages |
79-99 |
|
|
Keywords |
|
|
|
Abstract |
|
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
cidis @ cidis @ |
Serial |
197 |
|
Permanent link to this record |
|
|
|
|
Author |
Miguel Realpe; Boris X. Vintimilla; L. Vlacic |

|
|
Title |
Towards Fault Tolerant Perception for autonomous vehicles: Local Fusion. |
Type |
Conference Article |
|
Year |
2015 |
Publication  |
IEEE 7th International Conference on Cybernetics and Intelligent Systems (CIS) and IEEE Conference on Robotics, Automation and Mechatronics (RAM), Siem Reap, 2015. |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
253-258 |
|
|
Keywords |
|
|
|
Abstract |
Many robust sensor fusion strategies have been developed in order to reliably detect the surrounding environments of an autonomous vehicle. However, in real situations there is always the possibility that sensors or other components may fail. Thus, internal modules and sensors need to be monitored to ensure their proper function. This paper introduces a general view of a perception architecture designed to detect and classify obstacles in an autonomous vehicle's environment using a fault tolerant framework, whereas elaborates the object detection and local fusion modules proposed in order to achieve the modularity and real-time process required by the system. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
cidis @ cidis @ |
Serial |
37 |
|
Permanent link to this record |
|
|
|
|
Author |
Milton Mendieta; F. Panchana; B. Andrade; B. Bayot; C. Vaca; Boris X. Vintimilla; Dennis G. Romero |

|
|
Title |
Organ identification on shrimp histological images: A comparative study considering CNN and feature engineering. |
Type |
Conference Article |
|
Year |
2018 |
Publication  |
IEEE Ecuador Technical Chapters Meeting ETCM 2018. Cuenca, Ecuador |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
1-6 |
|
|
Keywords |
|
|
|
Abstract |
The identification of shrimp organs in biology using
histological images is a complex task. Shrimp histological images
poses a big challenge due to their texture and similarity among
classes. Image classification by using feature engineering and
convolutional neural networks (CNN) are suitable methods to
assist biologists when performing organ detection. This work
evaluates the Bag-of-Visual-Words (BOVW) and Pyramid-Bagof-
Words (PBOW) models for image classification leveraging big
data techniques; and transfer learning for the same classification
task by using a pre-trained CNN. A comparative analysis
of these two different techniques is performed, highlighting
the characteristics of both approaches on the shrimp organs
identification problem. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
gtsi @ user @ |
Serial |
87 |
|
Permanent link to this record |
|
|
|
|
Author |
Patricia L. Suárez, Angel D. Sappa, Boris X. Vintimilla |

|
|
Title |
Cycle generative adversarial network: towards a low-cost vegetation index estimation |
Type |
Conference Article |
|
Year |
2021 |
Publication  |
IEEE International Conference on Image Processing (ICIP 2021) |
Abbreviated Journal |
|
|
|
Volume |
2021-September |
Issue |
|
Pages |
2783-2787 |
|
|
Keywords |
CyclicGAN, NDVI, near infrared spectra, instance normalization. |
|
|
Abstract |
This paper presents a novel unsupervised approach to estimate the Normalized Difference Vegetation Index (NDVI).The NDVI is obtained as the ratio between information from the visible and near infrared spectral bands; in the current work, the NDVI is estimated just from an image of the visible spectrum through a Cyclic Generative Adversarial Network (CyclicGAN). This unsupervised architecture learns to estimate the NDVI index by means of an image translation between the red channel of a given RGB image and the NDVI unpaired index’s image. The translation is obtained by means of a ResNET architecture and a multiple loss function. Experimental results obtained with this unsupervised scheme show the validity of the implemented model. Additionally, comparisons with the state of the art approaches are provided showing improvements with the proposed approach. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
cidis @ cidis @ |
Serial |
164 |
|
Permanent link to this record |
|
|
|
|
Author |
Patricia L. Suarez; Angel D. Sappa; Boris X. Vintimilla |

|
|
Title |
Adaptive Harris Corners Detector Evaluated with Cross-Spectral Images |
Type |
Conference Article |
|
Year |
2018 |
Publication  |
International Conference on Information Technology & Systems (ICITS 2018). ICITS 2018. Advances in Intelligent Systems and Computing |
Abbreviated Journal |
|
|
|
Volume |
721 |
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
This paper proposes a novel approach to use cross-spectral
images to achieve a better performance with the proposed Adaptive Harris
corner detector comparing its obtained results with those achieved
with images of the visible spectra. The images of urban, field, old-building
and country category were used for the experiments, given the variety of
the textures present in these images, with which the complexity of the
proposal is much more challenging for its verification. It is a new scope,
which means improving the detection of characteristic points using crossspectral
images (NIR, G, B) and applying pruning techniques, the combination
of channels for this fusion is the one that generates the largest
variance based on the intensity of the merged pixels, therefore, it is that
which maximizes the entropy in the resulting Cross-spectral images.
Harris is one of the most widely used corner detection algorithm, so
any improvement in its efficiency is an important contribution in the
field of computer vision. The experiments conclude that the inclusion of
a (NIR) channel in the image as a result of the combination of the spectra,
greatly improves the corner detection due to better entropy of the
resulting image after the fusion, Therefore the fusion process applied to
the images improves the results obtained in subsequent processes such as
identification of objects or patterns, classification and/or segmentation. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
1 |
Approved |
no |
|
|
Call Number |
gtsi @ user @ |
Serial |
84 |
|
Permanent link to this record |