toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Raul A. Mira; Patricia L. Suarez; Rafael E. Rivadeneira; Angel D. Sappa pdf  openurl
  Title PETRA: A Crowdsourcing-Based Platform for Rocks Data Collection and Characterization Type Conference Article
  Year 2019 Publication IEEE ETCM 2019 Fourth Ecuador Technical Chapters Meeting; Guayaquil, Ecuador Abbreviated Journal  
  Volume Issue Pages 1-6  
  Keywords  
  Abstract This paper presents details of a distributed platform intended for data acquisition, evaluation, storage and visualization, which is fully implemented under the crowdsourcing paradigm. The proposed platform is the result from collaboration between computer science and petrology researchers and it is intended for academic purposes. The platform is designed within a MTV (Model, Template and View) architecture and also designed for a collaborative data store and managing of rocks from multiple readers and writers, taking advantage of ubiquity of web applications, and neutrality of researchers from different

communities to validate the data. The platform is being used and validated by students and academics from our university; in the near future it will be open to other users interested on this topic.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language (up) Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number gtsi @ user @ Serial 112  
Permanent link to this record
 

 
Author Sebastián Fuenzalida; Keyla Toapanta; Jonathan S. Paillacho Corredores; Dennys Paillacho pdf  openurl
  Title Forward and Inverse Kinematics of a Humanoid Robot Head for Social Human Robot-Interaction Type Conference Article
  Year 2019 Publication IEEE ETCM 2019 Fourth Ecuador Technical Chapters Meeting; Guayaquil, Ecuador Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract This paper presents an analysis of forward and inverse kinematics for a humanoid robotic head. The robotic head is used for the study of social human-robot interaction, such as a support tool to maintain the attention of patients with Autism Spectrum Disorder. The design of a parallel robot that emulates human head movements through a closed structure is presented. The position and orientation in this space is controlled by three servomotors. For this, the solutions made for the kinematic problem are encompassed by a geometric analysis of a mobile base. This article describes a non-systematic method,

called the geometric method, and compares some of the most popular existing methods considering reliability and computational cost. The geometric method avoids the use of changing reference systems, and instead uses geometric

relationships to directly obtain the position based on joint variables; and the other way around. Therefore, it converges in a few iterations and has a low computational cost.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language (up) Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number gtsi @ user @ Serial 113  
Permanent link to this record
 

 
Author Patricia L. Suarez; Angel D. Sappa; Boris X. Vintimilla pdf  openurl
  Title Image patch similarity through a meta-learning metric based approach Type Conference Article
  Year 2019 Publication 15th International Conference on Signal Image Technology & Internet based Systems (SITIS 2019); Sorrento, Italia Abbreviated Journal  
  Volume Issue Pages 511-517  
  Keywords  
  Abstract Comparing images regions are one of the core methods used on computer vision for tasks like image classification, scene understanding, object detection and recognition. Hence, this paper proposes a novel approach to determine similarity of image regions (patches), in order to obtain the best representation of image patches. This problem has been studied by many researchers presenting different approaches, however, the ability to find the better criteria to measure the similarity on image regions are still a challenge. The present work tackles this problem using a few-shot metric based meta-learning framework able to compare image regions and determining a similarity measure to decide if there is similarity between the compared patches. Our model is training end-to-end from scratch. Experimental results

have shown that the proposed approach effectively estimates the similarity of the patches and, comparing it with the state of the art approaches, shows better results.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language (up) Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number gtsi @ user @ Serial 115  
Permanent link to this record
 

 
Author Miguel Realpe; Jonathan S. Paillacho Corredores; Joe Saverio & Allan Alarcon pdf  openurl
  Title Open Source system for identification of corn leaf chlorophyll contents based on multispectral images Type Conference Article
  Year 2019 Publication International Conference on Applied Technologies (ICAT 2019); Quito, Ecuador Abbreviated Journal  
  Volume Issue Pages 572-581  
  Keywords  
  Abstract It is important for farmers to know the level of chlorophyll in plants since this depends on the treatment they should give to their crops. There are two common classic methods to get chlorophyll values: from laboratory analysis and electronic devices. Both methods obtain the chlorophyll level of one sample at a time, although they can be destructive. The objective of this research is to develop a system that allows obtaining the chlorophyll level of plants using images.

Python programming language and different libraries of that language were used to develop the solution. It was decided to implement an image labeling module, a simple linear regression and a prediction module. The first module was used to create a database that links the values of the images with those of chlorophyll, which was then used to obtain linear regression in order to determine the relationship between these variables. Finally, the linear

regression was used in the prediction system to obtain chlorophyll values from the images. The linear regression was trained with 92 images, obtaining a root-mean-square error of 7.27 SPAD units. While the testing was perform using 10 values getting a maximum error of 15.5%.

It is concluded that the system is appropriate for chlorophyll contents identification of corn leaves in field tests.

However, it can also be adapted for other measurement and crops. The system can be downloaded at github.com/JoeSvr95/NDVI-Checking [1].
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language (up) Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number gtsi @ user @ Serial 116  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: