|
Records |
Links |
|
Author |
Charco, J.L., Sappa, A.D., Vintimilla, B.X., Velesaca, H.O. |

|
|
Title |
Camera pose estimation in multi-view environments:from virtual scenarios to the real world |
Type |
Journal Article |
|
Year |
2021 |
Publication |
In Image and Vision Computing Journal. (Article number 104182) |
Abbreviated Journal |
|
|
|
Volume |
Vol. 110 |
Issue |
|
Pages |
|
|
|
Keywords  |
Relative camera pose estimation, Domain adaptation, Siamese architecture, Synthetic data, Multi-view environments |
|
|
Abstract |
This paper presents a domain adaptation strategy to efficiently train network architectures for estimating the relative camera pose in multi-view scenarios. The network architectures are fed by a pair of simultaneously acquired
images, hence in order to improve the accuracy of the solutions, and due to the lack of large datasets with pairs of
overlapped images, a domain adaptation strategy is proposed. The domain adaptation strategy consists on transferring the knowledge learned from synthetic images to real-world scenarios. For this, the networks are firstly
trained using pairs of synthetic images, which are captured at the same time by a pair of cameras in a virtual environment; and then, the learned weights of the networks are transferred to the real-world case, where the networks are retrained with a few real images. Different virtual 3D scenarios are generated to evaluate the
relationship between the accuracy on the result and the similarity between virtual and real scenarios—similarity
on both geometry of the objects contained in the scene as well as relative pose between camera and objects in the
scene. Experimental results and comparisons are provided showing that the accuracy of all the evaluated networks for estimating the camera pose improves when the proposed domain adaptation strategy is used,
highlighting the importance on the similarity between virtual-real scenarios. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
English |
Summary Language |
English |
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
cidis @ cidis @ |
Serial |
147 |
|
Permanent link to this record |
|
|
|
|
Author |
Miguel Oliveira; Vítor Santos; Angel D. Sappa; Paulo Dias; A. Paulo Moreira |

|
|
Title |
Incremental Texture Mapping for Autonomous Driving |
Type |
Journal Article |
|
Year |
2016 |
Publication |
Robotics and Autonomous Systems Journal |
Abbreviated Journal |
|
|
|
Volume |
Vol. 84 |
Issue |
|
Pages |
pp. 113-128 |
|
|
Keywords  |
Scene reconstruction, Autonomous driving, Texture mapping |
|
|
Abstract |
Autonomous vehicles have a large number of on-board sensors, not only for providing coverage all around the vehicle, but also to ensure multi-modality in the observation of the scene. Because of this, it is not trivial to come up with a single, unique representation that feeds from the data given by all these sensors. We propose an algorithm which is capable of mapping texture collected from vision based sensors onto a geometric description of the scenario constructed from data provided by 3D sensors. The algorithm uses a constrained Delaunay triangulation to produce a mesh which is updated using a specially devised sequence of operations. These enforce a partial configuration of the mesh that avoids bad quality textures and ensures that there are no gaps in the texture. Results show that this algorithm is capable of producing fine quality textures. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
English |
Summary Language |
English |
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
cidis @ cidis @ |
Serial |
50 |
|
Permanent link to this record |
|
|
|
|
Author |
Mónica Villavicencio; Alain Abran |

|
|
Title |
Facts and Perceptions Regarding Software Measurement in Education and in Practice: Preliminary Results |
Type |
Journal Article |
|
Year |
2011 |
Publication |
Journal of Software Engineering and Application |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
pp. 227-234 |
|
|
Keywords  |
Software measurement, education, software engineering |
|
|
Abstract |
How is software measurement addressed in undergraduate and graduate programs in universities? Do organizations consider that the graduating students they hire have an adequate knowledge of software measurement? To answer these and related questions, a survey was administered to participants who attended the IWSM-MENSURA 2010 conference in Stuttgart, Germany. Forty-seven of the 69 conference participants (including software development practitioners, software measurement consultants, university professors, and graduate students) took part in the survey. The results indicate that software measurement topics are: A) covered mostly at the graduate level and not at the undergraduate level, and B) not mandatory. Graduate students and professors consider that, of the measurement topics covered in university curricula, specific topics, such as measures for the requirements phase, and measurement techniques and tools, receive more attention in the academic context. A common observation of the practitioners who participated in the survey was that students hired as new employees bring limited software measurement-related knowledge to their organizations. Discussion of the findings and directions for future research are presented. |
|
|
Address |
2 CIDIS-FIEC, Escuela Superior Politécnica del Litoral (ESPOL), Guayaquil, Ecuador |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
English |
Summary Language |
English |
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
cidis @ cidis @ |
Serial |
17 |
|
Permanent link to this record |
|
|
|
|
Author |
Cristhian A. Aguilera, Cristhian Aguilera, Cristóbal A. Navarro, & Angel D. Sappa |

|
|
Title |
Fast CNN Stereo Depth Estimation through Embedded GPU Devices |
Type |
Journal Article |
|
Year |
2020 |
Publication |
Sensors 2020 |
Abbreviated Journal |
|
|
|
Volume |
Vol. 2020-June |
Issue |
11 |
Pages |
pp. 1-13 |
|
|
Keywords  |
stereo matching; deep learning; embedded GPU |
|
|
Abstract |
Current CNN-based stereo depth estimation models can barely run under real-time
constraints on embedded graphic processing unit (GPU) devices. Moreover, state-of-the-art
evaluations usually do not consider model optimization techniques, being that it is unknown what is
the current potential on embedded GPU devices. In this work, we evaluate two state-of-the-art models
on three different embedded GPU devices, with and without optimization methods, presenting
performance results that illustrate the actual capabilities of embedded GPU devices for stereo depth
estimation. More importantly, based on our evaluation, we propose the use of a U-Net like architecture
for postprocessing the cost-volume, instead of a typical sequence of 3D convolutions, drastically
augmenting the runtime speed of current models. In our experiments, we achieve real-time inference
speed, in the range of 5–32 ms, for 1216 368 input stereo images on the Jetson TX2, Jetson Xavier,
and Jetson Nano embedded devices. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
English |
Summary Language |
English |
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
14248220 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
cidis @ cidis @ |
Serial |
132 |
|
Permanent link to this record |