toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Miguel Oliveira; Vítor Santos; Angel D. Sappa; Paulo Dias pdf  openurl
  Title Scene representations for autonomous driving: an approach based on polygonal primitives Type Conference Article
  Year 2015 Publication Iberian Robotics Conference (ROBOT 2015), Lisbon, Portugal, 2015 Abbreviated Journal  
  Volume 417 Issue Pages 503-515  
  Keywords (up) Scene reconstruction, Point cloud, Autonomous vehicles  
  Abstract In this paper, we present a novel methodology to compute a 3D scene representation. The algorithm uses macro scale polygonal primitives to model the scene. This means that the representation of the scene is given as a list of large scale polygons that describe the geometric structure of the environment. Results show that the approach is capable of producing accurate descriptions of the scene. In addition, the algorithm is very efficient when compared to other techniques.  
  Address  
  Corporate Author Thesis  
  Publisher Springer International Publishing Switzerland 2016 Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference Second Iberian Robotics Conference  
  Notes Approved no  
  Call Number cidis @ cidis @ Serial 45  
Permanent link to this record
 

 
Author Cristhian A. Aguilera, Cristhian Aguilera, Cristóbal A. Navarro, & Angel D. Sappa pdf  openurl
  Title Fast CNN Stereo Depth Estimation through Embedded GPU Devices Type Journal Article
  Year 2020 Publication Sensors 2020 Abbreviated Journal  
  Volume Vol. 2020-June Issue 11 Pages pp. 1-13  
  Keywords (up) stereo matching; deep learning; embedded GPU  
  Abstract Current CNN-based stereo depth estimation models can barely run under real-time

constraints on embedded graphic processing unit (GPU) devices. Moreover, state-of-the-art

evaluations usually do not consider model optimization techniques, being that it is unknown what is

the current potential on embedded GPU devices. In this work, we evaluate two state-of-the-art models

on three different embedded GPU devices, with and without optimization methods, presenting

performance results that illustrate the actual capabilities of embedded GPU devices for stereo depth

estimation. More importantly, based on our evaluation, we propose the use of a U-Net like architecture

for postprocessing the cost-volume, instead of a typical sequence of 3D convolutions, drastically

augmenting the runtime speed of current models. In our experiments, we achieve real-time inference

speed, in the range of 5–32 ms, for 1216  368 input stereo images on the Jetson TX2, Jetson Xavier,

and Jetson Nano embedded devices.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 14248220 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number cidis @ cidis @ Serial 132  
Permanent link to this record
 

 
Author Rafael E. Rivadeneira; Angel D. Sappa; Boris X. Vintimilla pdf  isbn
openurl 
  Title Thermal Image Super-Resolution: a Novel Architecture and Dataset Type Conference Article
  Year 2020 Publication The 15th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2020); Valletta, Malta; 27-29 Febrero 2020 Abbreviated Journal  
  Volume 4 Issue Pages 111-119  
  Keywords (up) Thermal images, Far Infrared, Dataset, Super-Resolution.  
  Abstract This paper proposes a novel CycleGAN architecture for thermal image super-resolution, together with a large

dataset consisting of thermal images at different resolutions. The dataset has been acquired using three thermal

cameras at different resolutions, which acquire images from the same scenario at the same time. The thermal

cameras are mounted in rig trying to minimize the baseline distance to make easier the registration problem.

The proposed architecture is based on ResNet6 as a Generator and PatchGAN as Discriminator. The novelty

on the proposed unsupervised super-resolution training (CycleGAN) is possible due to the existence of aforementioned thermal images—images of the same scenario with different resolutions. The proposed approach

is evaluated in the dataset and compared with classical bicubic interpolation. The dataset and the network are

available.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-989758402-2 Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number gtsi @ user @ Serial 121  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: