
Scene Representations for Autonomous
Driving: An Approach Based on Polygonal
Primitives

Miguel Oliveira, Vítor Santos, Angel D. Sappa and Paulo Dias

Abstract In this paper, we present a novel methodology to compute a 3D scene
representation. The algorithm uses macro scale polygonal primitives to model the
scene. This means that the representation of the scene is given as a list of large scale
polygons that describe the geometric structure of the environment. Results show that
the approach is capable of producing accurate descriptions of the scene. In addition,
the algorithm is very efficient when compared to other techniques.

Keywords Scene reconstruction · Point cloud · Autonomous vehicles

1 Introduction

Recent research in the fields of pattern recognition suggest that the usage of 3D sen-
sors improves the effectiveness of perception, "since it supports good situation aware-

M. Oliveira(B)

Instituto de Engenharia de Sistemas e Computadores,
Tecnologia e Ciência, R. Dr. Roberto Frias, 465, 4200 Porto, Portugal
e-mail: miguel.r.oliveira@inesctec.pt

V. Santos · P. Dias
Institute of Electronics and Telematics Engineering of Aveiro,
Campus Universitario de Santiago, 3800 Aveiro, Portugal

V. Santos
Department of Mechanical Engineering, University of Aveiro,
Campus Universitario de Santiago, 3800 Aveiro, Portugal

A.D. Sappa
Computer Vision Center, Edificio O, Campus UAB, Bellaterra, 08193 Barcelona, Spain

A.D. Sappa
Facultad de Ingeniería Eléctrica y Computación (FIEC), Escuela Superior Politécnica del Litoral
(ESPOL), Campus Gustavo Galindo, Km 30.5 Vía Perimetral, 09-01-5863, Guayaquil, Ecuador

© Springer International Publishing Switzerland 2016
L.P. Reis et al. (eds.), Robot 2015: Second Iberian Robotics Conference,
Advances in Intelligent Systems and Computing 417,
DOI: 10.1007/978-3-319-27146-0_39

503



504 M. Oliveira et al.

ness for motion level tele operation as well as higher level intelligent autonomous
functions" [3]. Nowadays autonomous robotic systems have at their disposal a new
generation of 3D sensors, which provide 3D data of unprecedented quality [16]. In
robotic systems, 3D data is used to compute some form of internal representation of
the environment. In this paper, we refer to this as 3D scene representation or simply
3D representation. The improvement of 3D data available to robotic systems should
pave the road for more comprehensive 3D representations. In turn, advanced 3D
representations of the scenes are expected to play a major role in future robotic appli-
cations since they support a wide variety of tasks, including navigation, localization,
and perception [4].

In summary, the improvement in the quality of 3D data clearly opens the possi-
bility of building more complex scene representations. In turn, more advanced scene
representations will surely have a positive impact on the overall performance of
robotic systems. Despite this, complex scene representations have not yet been sub-
stantiated into robotic applications. The problem is how to process the large amounts
of 3D data. In this context, classical computer graphics algorithms are not optimized
to operate in real time, which is an non-negotiable requirement of the majority of
robotic applications. Unless novel, efficient methodologies are introduced, which
produce compact yet elaborate scene representations, robotic systems are limited
to mapping the scenes in classical 2D or 2.5D representations or are restricted to
off-line applications.

Very frequently, the scenarios where autonomous systems operate are urban loca-
tions or buildings. Such scenes are often characterized for having a large number of
well defined geometric structures. In outdoor scenarios, these geometric structures
could be road surfaces or buildings, while in indoor scenarios they may be furniture,
walls, stairs, etc. We refer to the scale of these structures as a macro scale, meaning
that 3D sensor may collect thousands of measurements of those structures in a single
scan. A scene representations is defined by the surface primitive that is employed.
For example, triangulation approaches make use of triangle primitives, while other
approaches such as Poisson resort to implicit surfaces. Triangulation approaches gen-
erate surface primitives that are considered to have a micro scale, since a geometric
structure of the scene could contain hundreds or thousands of triangles. Micro scale
primitives are inadequate to model large scale environments because they are not
compact enough.

In this paper, we present a novel methodology to compute a 3D scene representa-
tion. The algorithm uses macro scale polygonal primitives to model the scene. This
means that the representation of the scene is given as a list of large scale polygons
that describe the geometric structure of the environment. The proposed representa-
tion addresses the problems that were raised in previous lines: the representation is
compact and can be computed much faster than most others, while at the same time
providing a sufficiently accurate geometric representation of the scene from the point
of view of the tasks required by an autonomous system.

Scene reconstruction is defined as the computation of a geometric 3D model from
multiple measurements. These measurements could be obtained from stereo systems,
range sensors, etc. It could also include the texture mapping of the generated model.



Scene Representations for Autonomous Driving 505

Scene reconstruction methodologies are grouped into two different approaches: sur-
face based representations or volumetric occupancy representations. In the first, the
underlying surfaces of the scene that generated the range measurements are estimated,
while in the second, the range measurements are grouped into grid cells which are
then as labelled free or occupied. Traditional surface based representations include
several 3D triangulations methodologies, such as 3D Delaunay triangulation [10], or
Ball Pivoting Algorithm (BPA) [2]. The Greedy triangulation (GT) is an approach
designed for fast surface reconstruction from large noisy data sets [12]. Given an
unorganized 3D point cloud, the algorithm recreates the underlying surface’s geo-
metrical properties using data re-sampling and a robust triangulation algorithm, the
authors claim to achieve near real time. There are also some alternative higher order
surface representation methods such as Poisson surface reconstruction [11], Orienta-
tion Inference Framework [6] or learning approaches [13]. However, most of these
methods do not tackle well noisy range measurements and, above all, since these
methods involve a large number of nearest neighbor queries, they are very slow to
compute. One attempt to accelerate the triangulation of point clouds was done in [12],
but authors report they have only achieved near real time. Volumetric occupancy rep-
resentations include occupancy grids [17], elevation maps [14], multi-level surface
maps [15] or octrees [18]. While these representations are easier to compute, they do
not provide accurate information about the geometry of the scene. The remainder of
this paper is organized as follows: section 2 presents the proposed approach, results
are given in section 3 and conclusions in section 4.

2 Proposed Approach

This work proposes to explore the usage of geometric polygonal primitives to per-
form scene reconstruction. In other words, the idea is to describe a scene by a list
of polygons. The detection of polygonal geometric primitives is simple when com-
pared to the detection of other more complex primitives. Furthermore, given that
road environments are often geometrically structured, it seems feasible to represent
the 3D structure with a set of planar polygons. In addition to that, polygons are com-
pact representations, which require only the support plane and a list of points to be
described.

Geometric polygonal primitives are described by a support plane and a bounding
polygon. Let Gi represent the ith polygonal geometric primitive of a given scene,
with the support plane Hessian form coefficients denoted by Gi

p = [
ai bi ci di

]
.

The search for the support plane is done on a given input point cloud P using a
RANSAC procedure [7]. RANSAC is an iterative method to estimate parameters of
a mathematical model from a set of observed data points. The assumption is that
data consists of inliers, i.e., data whose distribution can be explained by some set
of model parameters, and outliers, data that does not fit the model. The input to the
RANSAC algorithm is a set of observed data values, a parametrized model which is



506 M. Oliveira et al.

(a) (b)

(c) (d)

Fig. 1 Plane detection examples using RANSAC: (a) five best RANSAC candidates for the input
point cloud in grey; (b) a detail of (a); (c) without using clustering; (d) using clustering;

fitted to the observations, and the output are the model parameters, i.e., in the case
of detecting the support plane of polygonal primitives the Hessian coefficients.

Figure 1 (a) shows in different colors the inlier points of the five best candidates
of a RANSAC search. Wall like structures are correctly detected. Figure 1 (c) shows
the inliers (signalled in green) of a RANSAC plane detection. In this case, range
measurements from two separate walls have been signalled as inliers of a single
support plane. To address this issue, the set of inliers of each support plane hypothesis
is used as input to a clustering procedure. Using the proposed clustering algorithm
it is possible to separate the two walls into separate polygons as shown in Fig. 1 (d).

The computation of the bounding polygon is done after the detection of the support
plane. The bounding polygon Pi is defined by a list of 2D points p:

Pi = [p0,p1...pn] =
[

x0 x1 ... xn

y0 y1 ... yn

]
(1)

where n is the number of points in the polygon. In order to define the polygon points
in R

2 (which saves memory), a local reference system for each polygon primitive is
defined, with Z axis normal to the support plane, and the orientation of the remaining
axes defined arbitrarily. Polygons are computed using a 2D convex hull operation.
In this work the implementation provided in [8] is used to compute the 2D convex
hull, based on a non recursive version of [5], presented in [1].

The proposed detection of polygonal primitives is designed in a cascade like
processing architecture, which is efficient and fast to process. The input point cloud
contains a large amount of 3D points. We assume 3D points can only belong to a single
polygonal primitive, which makes sense since polygonal primitive represent objects



Scene Representations for Autonomous Driving 507

Algorithm 1. Cascade configuration for the detection of geometric polygonal prim-
itives
Require: P i t=0, the input point cloud at iteration 0
Ensure: A list of geometric polygonal primitives G = {G0, G1, ..., Gn}

Initialize number of primitives, k ← 0
Initialize number of iterations, i t ← 0
Initialize primitives list, G ← {}
Initialize cycle break flag, cycle_break ← false
while cycle_break = false do

RANSAC search over Pk , returns estimated plane Ĝk
p (first guess) and inliers Ik

if RANSAC found a candidate then
Cluster inliers point cloud Ik to cluster list C={C0, C1, ..., Cn}
Find largest cluster, max_cluster = argmaxi (size(Ci ))

Set the primitive support points Sk to the largest cluster, Sk = Cmax_cluster

Compute accurate plane coefficients from support points, Gk
p ← PCA over Sk

Compute bounding polygon Pk , its area A(Pk) and solidity S(Pk)

if A(Pk) > At and S(Pk) > St then
Add to primitive list, G ← {G, Gk}
increment number of primitives, k ← k + 1

end if
Remove support points Sk from P i t , compute P i t+1

else
Finish search for primitives, cycle_break = true

end if
increment number of iterations, i t ← i t + 1

end while

Fig. 2 Sequence collected from the Massachusetts Institute of Technology (MIT) dataset.

in the scene. Let Sk be the point cloud containing the support points of primitive k,
and Pk be the input point cloud in which the primitive was searched. The input point
cloud for the search of the next primitive, Pk+1, is obtained by removing the support
points of primitive k:



508 M. Oliveira et al.

Pk+1 =
{

� ∈ Pk | � /∈ Ik
}
. (2)

Since every iteration of primitive detection will conduct a search on a smaller
point cloud, it is expected that the cascade configuration is capable of reducing the
processing time. Algorithm 1 details the complete procedure for the detection of a
set of polygonal primitives given a point cloud.

3 Results

In order to evaluate the proposed 3D processing techniques a complete dataset both
with 3D laser data, cameras and accurate egomotion is required. The MIT autonomous
vehicle Talos competed in the Darpa Urban Challenge and achieved fourth overall
place. The data logged by the robot is publicly available [9]. In total, the MIT logs sum
up to 315GB of data. We have collected a small sequence of 40 seconds (200 meters
of vehicle movement) at the start of the race (see Fig. 2). The sequence contains
a continuous stream of sensor data, but in addition we have marked five locations
(A through E) which are used to facilitate the analysis of the results. Additional
information on each location is given in Table 1. Figure 3 shows images from all
cameras, isometric and top views of the 3D data, and a satellite photograph of location
C. The proposed approach is evaluated by analysing how the scenario contained in
the sequence is reconstructed.

(a) (b)

(c) (d) (e)

(f ) (g) (h)

Fig. 3 Location C of the sequence: (a) isometric view; (c) top view; (b) front 6mm camera; (e)
front (h) rear; (f ) left (g) right; (d) satellite view of the location.



Scene Representations for Autonomous Driving 509

(a) (b)

Fig. 4 Detection of geometric polygonal primitives in the data sets of sequence 1: (a) location C;
(b) location D.

Table 1 Information on each of the locations in this sequence. Columns description: pt, number of
points; size, memory size in mega bytes; t, mission time in seconds; d, traveled distance in meters.

Location Location Snapshot Sequence accumulated
Name pt (×106) size (MB) (1) pt (×106) size (MB) (1) t (s) d (m)

A 1.3 15.6 1.3 15.6 1 0
B 1.3 15.6 13.0 156.0 11 75
C 1.3 15.6 26.0 312.0 21 125
D 1.3 15.6 39.0 468.0 31 140
E 1.3 15.6 52.0 624.0 41 190

(1) Computed from the number of points times the three xyz dimensions
times the four bytes for each dimension (type float32). It is an approximate
value since there are other informations on the message, such as the time
stamp, the coordinate frame identification, etc.

0 2 4 6 8 10 12 14
0.5

1

1.5

2

2.5

3

3.5

4
x 10

5

Polygon number

N
um

be
r 

of
 p

oi
nt

s 
re

m
ai

ni
ng

 o
n 

th
e 

in
pu

t c
lo

ud

 

 

A
B
C
D
E

0 2 4 6 8 10 12 14
0.5

1

1.5

2

2.5

3

Polygon number

D
et

ec
tio

n 
tim

e 
(s

ec
s)

 

 

A
B
C
D
E

(a) (b)
Fig. 5 Cascade processing analysis: (a) the number of points left to process for a given input point
cloud, as a function of the index of the detected primitive; (b) the time it takes to perform the
detection of each of the geometric polygonal primitives as a function of the primitives index.

Figure 4 shows the polygonal primitives detected at locations C and D. It is
possible to observe that the majority of the relevant planes are picked up by the
algorithm.



510 M. Oliveira et al.

3.1 Computational Efficiency

The detection of polygonal primitives is operated in a cascade-like configuration. In
other words, the algorithm will search for polygonal primitives on a given input point
cloud. After the first primitive is found, all the range measurements that are explained
by that primitive are removed from the input point cloud. The second primitive is
then searched in a smaller point cloud and so on. Since the search for a primitive is
done over a decreasing size point cloud, it is expected that the search becomes faster
with the number of detected primitives. In Fig. 5 an analysis of the computation
time of each primitive is displayed. Primitives with higher numbers are detected in
posterior phases.

Figure 5 (a) shows the number of points remaining in the input point cloud as a
function of the primitive number. Results are shown for all locations in sequence 1.
The number of detected primitives varies from location to location. It is also possible
to observe that, as expected, the number of remaining points decreases with the
increase in the number of detected primitives. Also, the reduction in the number of
points is higher for early detected primitives. Hence, since the algorithm tends to
remove the largest portion of points at the early stages of the cascade processing, this
means that the latter stages will also be more efficient to compute. The reason for this
behaviour is the RANSAC algorithm. Because RANSAC will search for the larger
consensus, it will most likely select planes that are supported by a greater number of
points. In this way, RANSAC tends to select first polygons with the largest amount
of primitive support points. As a consequence, the largest decreases in the input point
cloud occur early in the cascade, which in turn fastens subsequent detection stages
of the cascade. The detection time per primitive is shown in Fig. 5 (b). The detection
time tends to decrease with the increase in polygon number, for the reasons that
where previously reported.

3.2 Comparison With Other Approaches

In this section we will compare the proposed approach with three surface reconstruc-
tion methodologies: Ball Pivoting Algorithm (BPA) [2], Greedy triangulation (GT)
[12] and Poisson Surface Reconstruction (POIS) [11]. Two different parameter con-
figurations the proposed approach are used. In the first Geometric Polygonal Primi-
tives (GPP)1, parameters are set so that only very large polygons are detected. Pro-
cessing time is faster, since a lot of polygons are discarded but, on the other hand,
accuracy or completeness of the scene representation should be degraded. The sec-
ond alternative, GPP 2, is configured so that even small polygons are detected, which
should provides a more accurate scene description at the cost of a higher computation
time.

Figure 6 (a) shows that the BPA method Figure 6 (d) shows results from the GPP.
Since our approach uses primitives to define macro size structures, the number of



Scene Representations for Autonomous Driving 511

polygons used to represent the scene is small. Even though, it can be said that the
most relevant polygons are part of the representation

Table 2 shows the computation times each algorithm took to reconstruct each
of the locations in the sequence. The GPP methodology is the fastest one. This
efficiency is related to the simplicity of the computed representation, and to the fact
that RANSAC analyses only a small sample of points in the input point cloud, which
means that not all input points are visited in order to reconstruct the scene, as is the
case with the slower triangulation approaches.

To measure the accuracy of each reconstruction approach, the results obtained by
BPA (the most accurate algorithm) are used as reference. Let X and Y be two meshes.
The Hausdorff distance between those meshes dH(X, Y ) is computed as:

(a) (b)

(c) (d)

Fig. 6 Reconstruction of location E of MIT sequence: (a) BPA; (b) GT; (c) POIS; (d) GPP2.

Table 2 Comparison of the computation time of several approaches for surface reconstruction on
the MIT data sets.

Sequence/ Processing time (secs)
Location BPA GT POIS GPP 1 GPP 2

A 659.0 154.0 63.2 16.3 27.3
B 752.9 157.5 61.6 25.3 17.4
C 488.2 156.3 56.3 13.5 49.4
D 480.4 142.4 52.6 25.2 25.2
E 558.8 149.0 57.9 47.4 58.1
μ 585.9 151.8 58.3 25.5 35.5



512 M. Oliveira et al.

dH(X, Y ) = max{ sup
x∈X

inf
y∈Y

d(x, y), sup
y∈Y

inf
x∈X

d(x, y) }, (3)

where sup and inf are the supremum and infinus, respectively. Since the Hausdorff
distance is computed over a set of points (sampled using a Montecarlo strategy).
In this particular case a variation of the Hausdorff distance, called the one sided
Hausdorff distance is used where only the supx∈X inf y∈Y d(x, y) part is computed,
because we only wish to measure how distant is each approach to the ground truth
and not the other way around. In this case, the X meshes are given by each of the
algorithms and the Y mesh is supplied by the ground truth mesh BPA. Table 3 shows
the Hausdorff distance values obtained by GT, POIS, GPP 1 and GPP 2 using BPA
meshes as ground truth.

The algorithm that obtains the best results is GT. The accuracy presented by the
GPP 1 and GPP 2 approaches are about 0.8 and 0.65 meters, respectively. Figure
7 shows a graphical representation of the error for all of the approaches. For each
approach, the output mesh has been sampled and the points are shown with color
associated to the computed one sided Hausdorff distance of each point. A Red-Green-
Blue colormap is used to code the distance. Red represents zero distance and blue
maximum distance. In Fig. 7 (a), corresponding to the GT approach, almost all points
have red color, resulting in low mean error. The POIS approach, represented in Fig.
7 (b), shows a lot of points in blue and green color, e.g., points whose minimum
distance to the ground truth sampled points was very large. This is why POIS shows
low accuracy values. In the case of the GPP approaches, 7 (c) and (d), some regions
of the sampled points are more prone to have large error distances, while those
in red seem to perfectly fit the ground truth mesh. The reason for this is that the
BPA methodology, that was selected to serve as ground truth, does not perform
interpolation over occluded areas, as the GPP approaches do. Most of the errors
appear in the polygonal primitive that represents the ground plane, since this is the
one that suffers more from occlusion from other planes. Errors may also result from
the usage of convex hulls to compute the boundary polygons. We have investigated
this by using alternatives to the proposed approach where the ground plane polygon
is suppressed, and where concave hulls are used. Results are shown in Table 3. We

Table 3 Comparison of the accuracy of the several approaches using BPA results as ground truth
and Hausdorff distance as metric.

Hausdorff distance (meters)
Location GT POIS GPP 1 GPP 2

max mean RMS max mean RMS max mean RMS max mean RMS
A 11.7 0.15 0.41 14.0 1.39 2.98 7.6 1.02 1.71 7.6 0.87 1.55
B 11.8 0.12 0.37 14.1 1.39 2.99 12.7 0.94 1.77 12.6 0.81 1.62
C 12.7 0.18 0.44 13.9 1.06 2.59 8.9 0.87 1.54 8.9 0.69 1.32
D 13.8 0.10 0.40 13.9 1.90 4.00 7.6 0.86 1.47 7.6 0.69 1.28
E 12.5 0.14 0.49 14.0 1.42 3.03 14.0 1.25 2.56 14.0 1.11 2.39
μ 12.5 0.14 0.42 13.9 1.43 3.12 10.2 0.99 1.81 10.1 0.83 1.63



Scene Representations for Autonomous Driving 513

can observe that, with the option of ground plane suppression and concave hull, the
mean accuracy of GPP 2 increases to 0.1 meters, when compared to the previous 1.63.

Figure 8 shows a visual analysis of the Hausdorff distance errors for these vari-
ations of GPP 2. It is possible to observe that regions with error, e.g., in blue and
green, decrease considerably when the concave hull is used, but in particular when
the ground plane polygon is discarded.

Table 4 Comparison of the Hausdorff distance accuracy of the GPP 2 approach using: the standard
approach, convex hull and ground plane included (also in Table 3); the convex hull with no ground
plane included; the concave hull with ground plane; and the concave hull without ground plane.

GPP 2 Hausdorff distance (meters)
Hull Convex Convex Concave Concave

Ground plane Included Not included Included Not included
Location max mean RMS max mean RMS max mean RMS max mean RMS

A 7.6 0.87 1.55 1.8 0.15 0.26 6.8 0.71 1.25 1.2 0.13 0.19
B 12.6 0.81 1.62 1.5 0.11 0.19 12.6 0.53 1.09 1.1 0.08 0.14
C 8.9 0.69 1.32 1.9 0.16 0.29 6.6 0.52 0.99 1.9 0.12 0.22
D 7.6 0.69 1.28 2.2 0.14 0.26 7.3 0.59 1.13 2.1 0.11 0.21
E 14.0 1.11 2.39 1.7 0.10 0.19 8.8 0.32 0.81 1.4 0.08 0.14
μ 10.1 0.83 1.63 1.8 0.13 0.24 8.4 0.53 1.05 1.5 0.10 0.18

(a) (b)

(c) (d)

Fig. 7 Qualitative analysis of the one sided Hausdorff distance in location C sequence 1: (a) GT;
(b) POIS; (c) GPP 1; (d) GPP 2; A Red-Green-Blue color map is used to code the distance. Red
represents zero distance and blue maximum distance.



514 M. Oliveira et al.

(a) (b)

(c) (d)

Fig. 8 Results from the Hausdorff distance obtained when using alternatives for the GPP 2 method
for location E, sequence 1: (a) the standard GPP 2, with ground plane and convex hull; (b) discarded
ground plane, convex hull; (c) with ground plane, concave hull; (d) discarded ground plane, concave
hull. A Red-Green-Blue color map is used to code the distance. Red represents zero distance and
blue maximum distance.

4 Conclusions

This paper proposes a novel approach to produce scene representations using the
array of sensors on-board autonomous vehicles. Since roads are semi structured
environments with a great deal of macro size geometric structures, we argue that
the use of polygonal primitives is well suited to describe these scenes. Results have
shown that the proposed approach is capable of producing accurate descriptions
of the scene, and that it is considerably faster than all the approaches used in this
evaluation. Future work will include the addition of texture on the polygons generated
by the proposed algorithm. In this way, we expect to have the means to produce scene
representations that can be used not only for standard task such as obstacle detection
and motion planning, but also for more complex endeavours such as recognizing
patterns in the scene.

Acknowledgments This work has been supported by the “Fundação para a Ciência e Tecnolo-
gia” under grant agreement SFRH/BD/43203/2008. A. Sappa has been partially supported by: the
Spanish Government under Project TIN2014-56919-C3-2-R and the PROMETEO Project of the
“Secretaría Nacional de Educación Superior, Ciencia, Tecnología e Innovación de la República del
Ecuador.



Scene Representations for Autonomous Driving 515

References

1. Barber, C.B., Dobkin, D.P., Huhdanpaa, H.: The quickhull algorithm for convex hulls. ACM
Transactions on Mathematical Software 22(4), 469–483 (1996)

2. Bernardini, F., Mittleman, J., Rushmeier, H., Silva, C., Taubin, G.: The ball-pivoting algorithm
for surface reconstruction. IEEE Transactions on Visualization and Computer Graphics 5(4),
349–359 (1999)

3. Birk, A., Vaskevicius, N., Pathak, K., Schwertfeger, S., Poppinga, J., Buelow, H.: 3-d perception
and modeling. IEEE Robotics Automation Magazine 16(4), 53–60 (2009)

4. Burgard, W., Pfaff, P.: Editorial: Three-dimensional mapping, part 1. Journal of Field Robotics
26(10), 757–758 (2009)

5. Bykat, A.: Convex hull of a finite set of points in two dimensions. Information Processing
Letters 7, 296–298 (1978)

6. Chen, Y.L., Lai, S.H.: An orientation inference framework for surface reconstruction from
unorganized point clouds. IEEE Transactions on Image Processing 20(3), 762–775 (2011)

7. Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with
applications to image analysis and automated cartography. In: ACM. Los Angeles, California,
June 1981

8. Hert, S., Schirra, S.: 2D convex hulls and extreme points. In: CGAL User and Reference Manual.
CGAL Editorial Board, 4th edn. (2012)

9. Huang, A.S., Antone, M., Olson, E., Fletcher, L., Moore, D., Teller, S., Leonard, J.: A High-rate,
Heterogeneous Data Set from the DARPA Urban Challenge. International Journal of Robotics
Research 29(13), 1595–1601 (2011)

10. Jovanovic, R., Lorentz, R.: Compression of volumetric data using 3D delaunay triangulation.
In: 2011 4th International Conference on Modeling, Simulation and Applied Optimization
(ICMSAO), pp. 1–5, April 2011

11. Kazhdan, M., Bolitho, M., Hoppe, H.: Poisson surface reconstruction. In: Proceedings of the
fourth Eurographics Symposium on Geometry Processing SGP 2006, pp. 61–70. Eurographics
Association (2006)

12. Marton, Z.C., Rusu, R.B., Beetz, M.: On fast surface reconstruction methods for large and noisy
datasets. In: Proceedings of the IEEE International Conference on Robotics and Automation
(ICRA), Kobe, Japan, May 2009

13. de Medeiros Brito, A., Doria Neto, A., Dantas de Melo, J., Garcia Goncalves, L.: An adaptive
learning approach for 3-d surface reconstruction from point clouds. IEEE Transactions on
Neural Networks 19(6), 1130–1140 (2008)

14. Oniga, F., Nedevschi, S.: Processing dense stereo data using elevation maps: Road sur-
face, traffic isle, and obstacle detection. IEEE Transactions on Vehicular Technology 59(3),
1172–1182 (2010)

15. Rivadeneyra, C., Miller, I., Schoenberg, J., Campbell, M.: Probabilistic estimation of multi-
level terrain maps. In: IEEE International Conference on Robotics and Automation, ICRA
2009, pp. 1643–1648, May 2009

16. Rusu, R.B., Cousins, S.: 3D is here: point cloud library (PCL). In: IEEE International Confer-
ence on Robotics and Automation (ICRA), Shanghai, China, May 2011

17. Weiss, T., Schiele, B., Dietmayer, K.: Robust driving path detection in urban and highway
scenarios using a laser scanner and online occupancy grids. In: 2007 IEEE Intelligent Vehicles
Symposium, pp. 184–189, June 2007

18. Zhou, K., Gong, M., Huang, X., Guo, B.: Data-parallel octrees for surface reconstruction. IEEE
Transactions on Visualization and Computer Graphics 17(5), 669–681 (2011)


