Rafael E. Rivadeneira, A. D. S., Vintimilla B. X. and Hammoud R. (2022). A Novel Domain Transfer-Based Approach for Unsupervised Thermal Image Super- Resolution. Sensors, Vol. 22(Issue 6).
|
Rafael E. Rivadeneira, A. D. S. and B. X. V. (2022). Multi-Image Super-Resolution for Thermal Images. In Proceedings of the International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications VISIGRAPP 2022 (Vol. 4, pp. 635–642).
|
Angel D. Sappa, P. L. S., Henry O. Velesaca, Darío Carpio. (2022). Domain adaptation in image dehazing: exploring the usage of images from virtual scenarios. In 16th International Conference on Computer Graphics, Visualization, Computer Vision and Image Processing (CGVCVIP 2022), julio 20-22 (pp. 85–92).
|
Daniela Rato, M. O., Victor Santos, Manuel Gomes & Angel Sappa. (2022). A Sensor-to-Pattern Calibration Framework for Multi-Modal Industrial Collaborative Cells. Journal of Manufacturing Systems, Vol. 64, pp. 497–507.
|
Velesaca, H. O., Suárez, P. L., Sappa, A. D., Carpio, D., Rivadeneira, R. E., & Sanchez, A. (2022). Review on Common Techniques for Urban Environment Video Analytics. In WORKSHOP BRASILEIRO DE CIDADES INTELIGENTES (WBCI 2022) (pp. 107–118).
|
Jorge L. Charco, A. D. S., Boris X. Vintimilla. (2022). Human Pose Estimation through A Novel Multi-View Scheme. In Proceedings of the International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications VISIGRAPP 2022 (Vol. 5, pp. 855–862).
Abstract: This paper presents a multi-view scheme to tackle the challenging problem of the self-occlusion in human
pose estimation problem. The proposed approach first obtains the human body joints of a set of images,
which are captured from different views at the same time. Then, it enhances the obtained joints by using a
multi-view scheme. Basically, the joints from a given view are used to enhance poorly estimated joints from
another view, especially intended to tackle the self occlusions cases. A network architecture initially proposed
for the monocular case is adapted to be used in the proposed multi-view scheme. Experimental results and
comparisons with the state-of-the-art approaches on Human3.6m dataset are presented showing improvements
in the accuracy of body joints estimations.
|
Xavier Soria, G. P. - J. & A. S. (2022). LDC: Lightweight Dense CNN for Edge Detection. IEEE Access journal, Vol. 10, pp. 68281–68290.
|
Rivadeneira, R. E., & Sappa, A. D. and V. B. X. (2022). Thermal Image Super-Resolution: A Novel Unsupervised Approach. In Communications in Computer and Information Science, 15th International Communications in Computer and Information Science Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (Vol. 1474, pp. 495–506).
|
Rafael E. Rivadeneira, A. D. S., Boris X. Vintimilla, Jin Kim, Dogun Kim et al. (2022). Thermal Image Super-Resolution Challenge Results- PBVS 2022. In Computer Vision and Pattern Recognition Workshops, (CVPRW 2022), junio 19-24. (Vol. 2022-June, pp. 349–357).
Abstract: This paper presents results from the third Thermal Image
Super-Resolution (TISR) challenge organized in the Perception Beyond the Visible Spectrum (PBVS) 2022 workshop.
The challenge uses the same thermal image dataset as the
first two challenges, with 951 training images and 50 validation images at each resolution. A set of 20 images was
kept aside for testing. The evaluation tasks were to measure
the PSNR and SSIM between the SR image and the ground
truth (HR thermal noisy image downsampled by four), and
also to measure the PSNR and SSIM between the SR image
and the semi-registered HR image (acquired with another
camera). The results outperformed those from last year’s
challenge, improving both evaluation metrics. This year,
almost 100 teams participants registered for the challenge,
showing the community’s interest in this hot topic.
|
Rangnekar, A., Mulhollan, Z., Vodacek, A., Hoffman, M., Sappa, A. D., & Yu, J. et al. (2022). Semi-Supervised Hyperspectral Object Detection Challenge Results-PBVS 2022. In Conference on Computer Vision and Pattern Recognition Workshops, (CVPRW 2022), junio 19-24. (Vol. 2022-June, pp. 389–397).
|