Rivadeneira, R. E., & Sappa, A. D. and V. B. X. (2022). Thermal Image Super-Resolution: A Novel Unsupervised Approach. In Communications in Computer and Information Science, 15th International Communications in Computer and Information Science Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (Vol. 1474, pp. 495–506).
|
Miguel A. Murillo, J. E. A., & Miguel Realpe. (2021). Beyond visual and radio line of sight UAVs monitoring system through open software in a simulated environment. In The 2nd International Conference on Applied Technologies (ICAT 2020), diciembre 2-4. Communications in Computer and Information Science (Vol. 1388, pp. 629–642).
Abstract: The problem of loss of line of sight when operating drones has be-come a reality with adverse effects for professional and amateur drone opera-tors, since it brings technical problems such as loss of data collected by the de-vice in one or more instants of time during the flight and even misunderstand-ings of legal nature when the drone flies over prohibited or private places. This paper describes the implementation of a drone monitoring system using the In-ternet as a long-range communication network in order to avoid the problem of loss of communication between the ground station and the device. For this, a simulated environment is used through an appropriate open software tool. The operation of the system is based on a client that makes requests to a server, the latter in turn communicates with several servers, each of which has a drone connected to it. In the proposed system when a drone is ready to start a flight, its server informs the main server of the system, which in turn gives feedback to the client informing it that the device is ready to carry out the flight; this way customers can send a mission to the device and keep track of its progress in real time on the screen of their web application.
|
Steven Silva, D. P., David Soque, María Guerra & Jonathan Paillacho. (2021). Autonomous Intelligent Navigation For Mobile Robots In Closed Environments. In The 2nd International Conference on Applied Technologies (ICAT 2020), diciembre 2-4. Communications in Computer and Information Science (Vol. 1388, pp. 391–402).
|
Luis C. Herrera, L. del R. L., Nayeth I. Solorzano, Jonathan S. Paillacho & Dennys Paillacho. (2021). Metrics Design of Usability and Behavior Analysis of a Human-Robot-Game Platform. In The 2nd International Conference on Applied Technologies (ICAT 2020), diciembre 2-4. Communication in Computer and Information Science (Vol. 1388, pp. 164–178).
|
Dennys Paillacho, Nayeth I. Solorzano Alcivar, & Jonathan S. Paillacho Corredores. (2021). LOLY 1.0: A Proposed Human-Robot-Game Platform Architecture for the Engagement of Children with Autism in the Learning Process. In The international Conference on Systems and Information Sciences (ICCIS 2020), julio 27-29. Advances in Intelligent Systems and Computing. (Vol. 1273, pp. 225–238).
|
Juca Aulestia M., L. J. M., Guaman Quinche J., Coronel Romero E., Chamba Eras L., & Roberto Jacome Galarza. (2020). Open innovation at university: a systematic literature review. Advances in Intelligent Systems and Computing, 1159 AISC, 2020, 3–14.
|
Viñán-Ludeña, M. S., Roberto Jacome Galarza, Montoya, L.R., Leon, A.V., & Ramírez, C.C. (2020). Smart university: an architecture proposal for information management using open data for research projects. Advances in Intelligent Systems and Computing, 1137 AISC, 2020, 172–178.
|
Angel Morera, Angel Sánchez, Angel D. Sappa, & José F. Vélez. (2019). Robust Detection of Outdoor Urban Advertising Panels in Static Images. In 17th International Conference on Practical Applications of Agents and Multi-Agent Systems (PAAMS 2019); Ávila, España. Communications in Computer and Information Science (Vol. 1047, pp. 246–256).
Abstract: One interesting publicity application for Smart City environments is recognizing brand information contained in urban advertising
panels. For such a purpose, a previous stage is to accurately detect and
locate the position of these panels in images. This work presents an effective solution to this problem using a Single Shot Detector (SSD) based
on a deep neural network architecture that minimizes the number of
false detections under multiple variable conditions regarding the panels and the scene. Achieved experimental results using the Intersection
over Union (IoU) accuracy metric make this proposal applicable in real
complex urban images.
|
Jorge Alvarez, Mireya Zapata, & Dennys Paillacho. (2019). Mechanical Design of a spatial mechanism for the robot head movements in social robotics for the evaluation of Human-Robot Interaction. In 2nd International Conference on Human Systems Engineering and Design: Future Trends and Applications (IHSED 2019); Munich, Alemania (Vol. 1026, pp. 160–165).
|
Jorge Alvarez Tello, Mireya Zapata, & Dennys Paillacho. (2019). Kinematic optimization of a robot head movements for the evaluation of human-robot interaction in social robotics. In 10th International Conference on Applied Human Factors and Ergonomics and the Affiliated Conferences (AHFE 2019), Washington D.C.; United States. Advances in Intelligent Systems and Computing (Vol. 975, pp. 108–118).
Abstract: This paper presents the simplification of the head movements from
the analysis of the biomechanical parameters of the head and neck at the
mechanical and structural level through CAD modeling and construction with
additive printing in ABS/PLA to implement non-verbal communication strategies and establish behavior patterns in the social interaction. This is using in the
denominated MASHI (Multipurpose Assistant robot for Social Human-robot
Interaction) experimental robotic telepresence platform, implemented by a
display with a fish-eye camera along with the mechanical mechanism, which
permits 4 degrees of freedom (DoF). In the development of mathematicalmechanical modeling for the kinematics codification that governs the robot and
the autonomy of movement, we have the Pitch, Roll, and Yaw movements, and
the combination of all of them to establish an active communication through
telepresence. For the computational implementation, it will be show the rotational matrix to describe the movement.
|