Omar Coello, M. C., Darío Carpio, Boris X. Vintimilla & Luis Chuquimarca. (2024). Enhancing Apple’s Defect Classification: Insights from Visible Spectrum and Narrow Spectral Band Imaging. In 14th International Conference on Pattern Recognition Systems (ICPRS) Londres 15 – 18 July 2024.
|
Jácome Galarza, L. R. (2024). Estimation of Corn Crop Yield using Multimodal Deep Learning from Multispectral Images and Environmental Sensors. In 19ª Conferência Ibérica de Sistemas e Tecnologias de Informação; CISTI'2024.
|
Dennis G. Romero, Roberto Yoncon, Angel Guale, Bonny Bayot, & Fanny Panchana. (2017). Evaluación de técnicas de clasificación orientadas a la identificación automática de órganos del camarón a partir de imágenes histológicas. In 15th LACCEI International Multi-Conference for Engineering, Education, and Technology (Vol. 2017-July, pp. 1–6).
|
Marta Diaz, Dennys Paillacho, & Cecilio Angulo. (2015). Evaluating Group-Robot Interaction in Crowded Public Spaces: A Week-Long Exploratory Study in the Wild with a Humanoid Robot Guiding Visitors Through a Science Museum. International Journal of Humanoid Robotics, Vol. 12.
Abstract: This paper describes an exploratory study on group interaction with a robot-guide in an open large-scale busy environment. For an entire week a humanoid robot was deployed in the popular Cosmocaixa Science Museum in Barcelona and guided hundreds of people through the museum facilities. The main goal of this experience is to study in the wild the episodes of the robot guiding visitors to a requested destination focusing on the group behavior during displacement. The walking behavior follow-me and the face to face communication in a populated environment are analyzed in terms of guide- visitors interaction, grouping patterns and spatial formations. Results from observational data show that the space configurations spontaneously formed by the robot guide and visitors walking together did not always meet the robot communicative and navigational requirements for successful guidance. Therefore additional verbal and nonverbal prompts must be considered to regulate effectively the walking together and follow-me behaviors. Finally, we discuss lessons learned and recommendations for robot’s spatial behavior in dense crowded scenarios.
|
Ricardo Cajo, & Wilton Agila. (2015). Evaluation of algorithms for linear and nonlinear PID control for Twin Rotor MIMO System. In Computer Aided System Engineering (APCASE), 2015 Asia-Pacific Conference on, Quito, 2015 (pp. 214–219). IEEE.
Abstract: In this paper the linear and nonlinear PID control algorithms are analyzed and for a twin rotor MIMO system (TRMS), whose characteristic is not linear with two degrees of freedom and cross-links. The aim of this work is to stabilize the TRMS, to achieve a particular position and follow a trajectory in the shortest time. Mathematical modeling of helicopter model is simulated using MATLAB / Simulink, the two degrees of freedom are controlled both horizontally and vertically through the proposed controllers. Also nonlinear segmented observers for each degree of freedom are designed in order to measure statements required by the nonlinear controller. Followed, a comparative analysis of both algorithms is presented to evaluate their performance in the real TRMS.
|
Wilton Agila, Ricardo Cajo, & Douglas Plaza. (2015). Experts Agents in PEM Fuel Cell Control. In 4ta International Conference on Renewable Energy Research and Applications (pp. 896–900). Palermo, Italy: IEEE.
Abstract: In the control of the PEM (Proton Exchange Membrane) fuel cell, the existence of both deliberative and reactive processes that facilitate the tasks of control resulting from a wide range of operating scenarios and range of conditions it is required. The latter is essential to adjust its parameters to the multiplicity of circumstances that may occur in the operation of the PEM stack. In this context, the design and development of an expert-agents based architecture for autonomous control of the PEM stack in top working conditions is presented. The architecture integrates perception and control algorithms using sensory and context information. It is structured in a hierarchy of levels with different time window and level of abstraction. The monitoring model and autonomic control of PEM stack has been validated with different types of PEM stacks and operating conditions demonstrating high reliability in achieving the objective of the proposed energy efficiency. Dynamic control of the wetting of the membrane is a clear example.
|
Dennys Paillacho Chiluiza & Steven Silva Mendoza. (2024). Exploring the Perceptions and Challenges of Social Robot Navigation: Two Case Studies in Different Socio-Technical Contexts. In In 36th Australian Conference on Human-Computer Interaction.
|
Rosero Vasquez Shendry. (2020). Facial recognition: traditional methods vs. methods based on deep learning. Advances in Intelligent Systems and Computing – Information Technology and Systems Proceedings of ICITS 2020.615–625.
|
Mónica Villavicencio, & Alain Abran. (2011). Facts and Perceptions Regarding Software Measurement in Education and in Practice: Preliminary Results. Journal of Software Engineering and Application, , pp. 227–234.
Abstract: How is software measurement addressed in undergraduate and graduate programs in universities? Do organizations consider that the graduating students they hire have an adequate knowledge of software measurement? To answer these and related questions, a survey was administered to participants who attended the IWSM-MENSURA 2010 conference in Stuttgart, Germany. Forty-seven of the 69 conference participants (including software development practitioners, software measurement consultants, university professors, and graduate students) took part in the survey. The results indicate that software measurement topics are: A) covered mostly at the graduate level and not at the undergraduate level, and B) not mandatory. Graduate students and professors consider that, of the measurement topics covered in university curricula, specific topics, such as measures for the requirements phase, and measurement techniques and tools, receive more attention in the academic context. A common observation of the practitioners who participated in the survey was that students hired as new employees bring limited software measurement-related knowledge to their organizations. Discussion of the findings and directions for future research are presented.
|
Cristhian A. Aguilera, C. A., Cristóbal A. Navarro, & Angel D. Sappa. (2020). Fast CNN Stereo Depth Estimation through Embedded GPU Devices. Sensors 2020, Vol. 2020-June(11), pp. 1–13.
Abstract: Current CNN-based stereo depth estimation models can barely run under real-time
constraints on embedded graphic processing unit (GPU) devices. Moreover, state-of-the-art
evaluations usually do not consider model optimization techniques, being that it is unknown what is
the current potential on embedded GPU devices. In this work, we evaluate two state-of-the-art models
on three different embedded GPU devices, with and without optimization methods, presenting
performance results that illustrate the actual capabilities of embedded GPU devices for stereo depth
estimation. More importantly, based on our evaluation, we propose the use of a U-Net like architecture
for postprocessing the cost-volume, instead of a typical sequence of 3D convolutions, drastically
augmenting the runtime speed of current models. In our experiments, we achieve real-time inference
speed, in the range of 5–32 ms, for 1216 368 input stereo images on the Jetson TX2, Jetson Xavier,
and Jetson Nano embedded devices.
|