Michael Teutsch, A. S. & R. H. (2021). Computer Vision in the Infrared Spectrum: Challenges and ApproachesComputer Vision in the Infrared Spectrum: Challenges and Approaches. Synthesis Lectures on Computer Vision, Vol. 10 No. 2, pp. 138.
|
M. Oliveira, L. Seabra Lopes, G. Hyun Lim, S. Hamidreza Kasaei, Angel D. Sappa, & A. Tomé. (2015). Concurrent Learning of Visual Codebooks and Object Categories in Open- ended Domains. In Intelligent Robots and Systems (IROS), 2015 IEEE/RSJ International Conference on, Hamburg, Germany, 2015 (pp. 2488–2495). Hamburg, Germany: IEEE.
Abstract: In open-ended domains, robots must continuously learn new object categories. When the training sets are created offline, it is not possible to ensure their representativeness with respect to the object categories and features the system will find when operating online. In the Bag of Words model, visual codebooks are usually constructed from training sets created offline. This might lead to non-discriminative visual words and, as a consequence, to poor recognition performance. This paper proposes a visual object recognition system which concurrently learns in an incremental and online fashion both the visual object category representations as well as the codebook words used to encode them. The codebook is defined using Gaussian Mixture Models which are updated using new object views. The approach contains similarities with the human visual object recognition system: evidence suggests that the development of recognition capabilities occurs on multiple levels and is sustained over large periods of time. Results show that the proposed system with concurrent learning of object categories and codebooks is capable of learning more categories, requiring less examples, and with similar accuracies, when compared to the classical Bag of Words approach using codebooks constructed offline.
|
Patricia Súarez, H. V., Dario Carpio & Angel Sappa. (2023). Corn Kernel Classification From Few Training Samples. In journal Artificial Intelligence in Agriculture, Vol. 9, pp. 89–99.
|
Jacome-Galarza L.-R. (2021). Crop yield prediction utilizing multimodal deep learning. In 16th Iberian Conference on Information Systems and Technologies, CISTI 2021, junio 23 – 26, 2021.
Abstract: La agricultura de precisión es una práctica vital para
mejorar la producción de cosechas. El presente trabajo tiene
como objetivo desarrollar un modelo multimodal de aprendizaje
profundo que es capaz de producir un mapa de salud de
cosechas. El modelo recibe como entradas imágenes multiespectrales
y datos de sensores de campo (humedad,
temperatura, estado del suelo, etc.) y crea un mapa de
rendimiento de la cosecha. La utilización de datos multimodales
tiene como finalidad extraer patrones ocultos del estado de salud
de las cosechas y de esta manera obtener mejores resultados que
los obtenidos mediante los índices de vegetación.
|
Patricia L. Suarez, Angel D. Sappa, & Boris X. Vintimilla. (2018). Cross-spectral image dehaze through a dense stacked conditional GAN based approach. In 14th IEEE International Conference on Signal Image Technology & Internet based Systems (SITIS 2018) (pp. 358–364).
Abstract: This paper proposes a novel approach to remove haze from RGB images using a near infrared images based on a dense stacked conditional Generative Adversarial Network (CGAN). The architecture of the deep network implemented receives, besides the images with haze, its corresponding image in the near infrared spectrum, which serve to accelerate the learning process of the details of the characteristics of the images. The model uses a triplet layer that allows the independence learning of each channel of the visible spectrum image to remove the haze on each color channel separately. A multiple loss function scheme is proposed, which ensures balanced learning between the colors and the structure of the images. Experimental results have shown that the proposed method effectively removes the haze from the images. Additionally, the proposed approach is compared with a state of the art approach showing better results.
|
Patricia L. Suarez, Angel D. Sappa, & Boris X. Vintimilla. (2017). Cross-spectral Image Patch Similarity using Convolutional Neural Network. In 2017 IEEE International Workshop of Electronics, Control, Measurement, Signals and their application to Mechatronics (ECMSM) (pp. 1–5).
|
Mildred Cruz, Cristhian A. Aguilera, Boris X. Vintimilla, Ricardo Toledo, & Ángel D. Sappa. (2015). Cross-spectral image registration and fusion: an evaluation study. In 2nd International Conference on Machine Vision and Machine Learning (Vol. 331). Barcelona, Spain: Computer Vision Center.
Abstract: This paper presents a preliminary study on the registration and fusion of cross-spectral imaging. The objective is to evaluate the validity of widely used computer vision approaches when they are applied at different spectral bands. In particular, we are interested in merging images from the infrared (both long wave infrared: LWIR and near infrared: NIR) and visible spectrum (VS). Experimental results with different data sets are presented.
|
Rafael Rivadeneira, H. V. & A. S. (2024). Cross-Spectral Image Registration: a Comparative Study and a New Benchmark Dataset. In In Fourth International Conference on Innovations in Computational Intelligence and Computer Vision (ICICV 2024).
|
Cristhian A. Aguilera, Angel D. Sappa, & Ricardo Toledo. (2017). Cross-Spectral Local Descriptors via Quadruplet Network. In Sensors Journal, Vol. 17, pp. 873.
|
N. Onkarappa, Cristhian A. Aguilera, B. X. Vintimilla, & Angel D. Sappa. (2014). Cross-spectral Stereo Correspondence using Dense Flow Fields. In Computer Vision Theory and Applications (VISAPP), 2014 International Conference on, Lisbon, Portugal, 2014 (Vol. 3, pp. 613–617). IEEE.
Abstract: This manuscript addresses the cross-spectral stereo correspondence problem. It proposes the usage of a dense flow field based representation instead of the original cross-spectral images, which have a low correlation. In this way, working in the flow field space, classical cost functions can be used as similarity measures. Preliminary experimental results on urban environments have been obtained showing the validity of the proposed approach.
|