Patricia L. Suarez, Angel D. Sappa, & Boris X. Vintimilla. (2017). Learning Image Vegetation Index through a Conditional Generative Adversarial Network. In 2nd IEEE Ecuador Tehcnnical Chapters Meeting (ETCM).
|
Patricia L. Suarez, Angel D. Sappa, & Boris X. Vintimilla. (2017). Learning to Colorize Infrared Images. In 15th International Conference on Practical Applications of Agents and Multi-Agent Systems.
|
Constantine Macías A., T. P. A., Realpe Miguel, Suárez Moncada Jenifer, Páez Rosas Diego & Jarrín Enrique Peláez. (2024). Leveraging Deep Learning Techniques for Marine and Coastal Wildlife Using Instance Segmentation: A Study on Galápagos Sea Lions. In 8th Ecuador Technical Chapters Meeting (ETCM 2024) Cuenca, October 15 – October 18, 2024, .
|
Leo Thomas Ramos & Angel D. Sappa. (2025). Leveraging U-Net and selective feature extraction for land cover classification using remote sensing imagery. Scientific Reports, Vol. 15.
|
Cristhian A. Aguilera, Angel D. Sappa, & R. Toledo. (2015). LGHD: A feature descriptor for matching across non-linear intensity variations. In IEEE International Conference on, Quebec City, QC, 2015 (pp. 178–181). Quebec City, QC, Canada: IEEE.
Abstract: This paper presents a new feature descriptor suitable to the task of matching features points between images with nonlinear intensity variations. This includes image pairs with significant illuminations changes, multi-modal image pairs and multi-spectral image pairs. The proposed method describes the neighbourhood of feature points combining frequency and spatial information using multi-scale and multi-oriented Log- Gabor filters. Experimental results show the validity of the proposed approach and also the improvements with respect to the state of the art.
|
Patricia Suarez & Angel D. Sappa. (2025). Lightweight Architecture for Fruit Quality Estimation in the Infrared Domain. In 5th International Conference on Innovations in Computational Intelligence and Computer Vision ICICV 2025.
|
Mehri, A., Ardakani, P.B., Sappa, A.D. (2021). LiNet: A Lightweight Network for Image Super Resolution. In 25th International Conference on Pattern Recognition (ICPR), enero 10-15, 2021 (pp. 7196–7202).
|
Wilton Agila, & Victor M. Huilcapi. (2014). Lógica borrosa para la estimación de estados críticos de una pila de combustible PEM. In Reconocimientos de Patrones, Control Inteligente y Comunicaciones (MACH 2014) (Vol. 5). Universidad de Cuenca.
Abstract: La determinación en tiempo real de los estados críticos de operación de la pila de combustible de membrana intercambio protónico (siglas en ingles, PEM) es uno de los principales retos para los sistemas de control de pilas de combustible PEM. En este trabajo, se presenta el desarrollo e implementación de un método no invasivo de bajo coste basado en técnicas de decisión borrosa que permite estimar los estados críticos de operación de la pila de combustible PEM. La estimación se realiza mediante perturbaciones al estado de operación de la pila y el análisis posterior de la evolución temporal del voltaje generado por la pila. La implementación de esta técnica de estimulación-percepción de estado de la pila de combustible para la detección de estados críticos constituye una novedad y un paso hacia el control autónomo en óptimas condiciones de la operación de las pilas de combustible PEM.
|
Dennys Paillacho, Nayeth I. Solorzano Alcivar, & Jonathan S. Paillacho Corredores. (2021). LOLY 1.0: A Proposed Human-Robot-Game Platform Architecture for the Engagement of Children with Autism in the Learning Process. In The international Conference on Systems and Information Sciences (ICCIS 2020), julio 27-29. Advances in Intelligent Systems and Computing. (Vol. 1273, pp. 225–238).
|
Carlos Monsalve, & Alain April and Alain Abran. (2011). Measuring software functional size from business process models. International Journal of Software Engineering and Knowledge Engineering, Vol. 21, pp. 311–338.
Abstract: ISO 14143-1 specifies that a functional size measurement (FSM) method must provide measurement procedures to quantify the functional user requirements (FURs) of software. Such quantitative information, functional size, is typically used, for instance, in software estimation. One of the international standards for FSM is the COSMIC FSM method — ISO 19761 — which was designed to be applied both to the business application (BA) software domain and to the real-time software domain. A recurrent problem in FSM is the availability and quality of the inputs required for measurement purposes; that is, well documented FURs. Business process (BP) models, as they are commonly used to gather requirements from the early stages of a project, could be a valuable source of information for FSM. In a previous article, the feasibility of such an approach for the BA domain was analyzed using the Qualigram BP modeling notation. This paper complements that work by: (1) analyzing the use of BPMN for FSM in the BA domain; (2) presenting notation-independent guidelines for the BA domain; and (3) analyzing the possibility of using BP models to perform FSM in the real-time domain. The measurement results obtained from BP models are compared with those of previous FSM case studies.
|