|
Rubio, G. A., Agila, W.E. (2021). A fuzzy model to manage water in polymer electrolyte membrane fuel cells. In Processes Journal. (Article number 904), Vol. 9(Issue 6).
Abstract: In this paper, a fuzzy model is presented to determine in real-time the degree of dehydration or flooding of a proton exchange membrane of a fuel cell, to optimize its electrical response and consequently, its autonomous operation. By applying load, current and flux variations in the dry, normal, and flooded states of the membrane, it was determined that the temporal evolution of the fuel cell voltage is characterized by changes in slope and by its voltage oscillations. The results were validated using electrochemical impedance spectroscopy and show slope changes from 0.435 to 0.52 and oscillations from 3.6 mV to 5.2 mV in the dry state, and slope changes from 0.2 to 0.3 and oscillations from 1 mV to 2 mV in the flooded state. The use of fuzzy logic is a novelty and constitutes a step towards the progressive automation of the supervision, perception, and intelligent control of fuel cells, allowing them to reduce their risks and increase their economic benefits.
|
|
|
Jacome-Galarza L.-R., R. R. M. - A., Paillacho Corredores J., Benavides Maldonado J.-L. (2022). Time series in sensor data using state of the art deep learning approaches: A systematic literature review. In VII International Conference on Science, Technology and Innovation for Society (CITIS 2021), mayo 26-28. Smart Innovation, Systems and Technologies. (Vol. Vol. 252, pp. 503–514).
Abstract: IoT (Internet of Things) and AI (Artificial Intelligence) are becoming
support tools for several current technological solutions due to significant advancements of these areas. The development of the IoT in various technological fields has contributed to predicting the behavior of various systems such as mechanical, electronic, and control using sensor networks. On the other hand, deep learning architectures have achieved excellent results in complex tasks, where patterns have been extracted in time series. This study has reviewed the most efficient deep learning architectures for forecasting and obtaining trends over time, together with data produced by IoT sensors. In this way, it is proposed to contribute to applications in fields in which IoT is contributing a technological advance such as smart cities, industry 4.0, sustainable agriculture, or robotics. Among the architectures studied in this article related to the process of time series data we have: LSTM (Long Short-Term Memory) for its high precision in prediction and the ability to automatically process input sequences; CNN (Convolutional Neural Networks) mainly in human activity
recognition; hybrid architectures in which there is a convolutional layer for data pre-processing and RNN (Recurrent Neural Networks) for data fusion from different sensors and their subsequent classification; and stacked LSTM Autoencoders that extract the variables from time series in an unsupervised way without the need of manual data pre-processing.Finally, well-known technologies in natural language processing are also used in time series data prediction, such as the attention mechanism and embeddings obtaining promising results.
|
|
|
Rivadeneira R.E., S. A. D., Vintimilla B.X., Nathan S., Kansal P., Mehri A et al. (2021). Thermal Image Super-Resolution Challenge – PBVS 2021. In In IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2021., junio 19 – 25, 2021 (pp. 4354–4362).
|
|
|
Jacome-Galarza L.-R. (2021). Crop yield prediction utilizing multimodal deep learning. In 16th Iberian Conference on Information Systems and Technologies, CISTI 2021, junio 23 – 26, 2021.
Abstract: La agricultura de precisión es una práctica vital para
mejorar la producción de cosechas. El presente trabajo tiene
como objetivo desarrollar un modelo multimodal de aprendizaje
profundo que es capaz de producir un mapa de salud de
cosechas. El modelo recibe como entradas imágenes multiespectrales
y datos de sensores de campo (humedad,
temperatura, estado del suelo, etc.) y crea un mapa de
rendimiento de la cosecha. La utilización de datos multimodales
tiene como finalidad extraer patrones ocultos del estado de salud
de las cosechas y de esta manera obtener mejores resultados que
los obtenidos mediante los índices de vegetación.
|
|
|
Mehri, A., Ardakani, P.B., Sappa, A.D. (2021). LiNet: A Lightweight Network for Image Super Resolution. In 25th International Conference on Pattern Recognition (ICPR), enero 10-15, 2021 (pp. 7196–7202).
|
|
|
Mehri, A., Ardakani, P.B., Sappa, A.D. (2021). MPRNet: Multi-Path Residual Network for Lightweight Image Super Resolution. In In IEEE Winter Conference on Applications of Computer Vision WACV 2021, enero 5-9, 2021 (pp. 2703–2712).
|
|
|
Charco, J. L., Sappa, A.D., Vintimilla, B.X., Velesaca, H.O. (2021). Camera pose estimation in multi-view environments:from virtual scenarios to the real world. In Image and Vision Computing Journal. (Article number 104182), Vol. 110.
Abstract: This paper presents a domain adaptation strategy to efficiently train network architectures for estimating the relative camera pose in multi-view scenarios. The network architectures are fed by a pair of simultaneously acquired
images, hence in order to improve the accuracy of the solutions, and due to the lack of large datasets with pairs of
overlapped images, a domain adaptation strategy is proposed. The domain adaptation strategy consists on transferring the knowledge learned from synthetic images to real-world scenarios. For this, the networks are firstly
trained using pairs of synthetic images, which are captured at the same time by a pair of cameras in a virtual environment; and then, the learned weights of the networks are transferred to the real-world case, where the networks are retrained with a few real images. Different virtual 3D scenarios are generated to evaluate the
relationship between the accuracy on the result and the similarity between virtual and real scenarios—similarity
on both geometry of the objects contained in the scene as well as relative pose between camera and objects in the
scene. Experimental results and comparisons are provided showing that the accuracy of all the evaluated networks for estimating the camera pose improves when the proposed domain adaptation strategy is used,
highlighting the importance on the similarity between virtual-real scenarios.
|
|
|
Rosero Vasquez Shendry. (2020). Facial recognition: traditional methods vs. methods based on deep learning. Advances in Intelligent Systems and Computing – Information Technology and Systems Proceedings of ICITS 2020.615–625.
|
|
|
Patricia L. Suarez. (2020). Procesamiento y representación de imágenes multiespectrales usando técnicas de aprendizaje profundo (Ph.D. Angel Sappa, Director & Ph.D. Boris Vintimilla, Codirector.). Ph.D. thesis. In Ediciones FIEC-ESPOL..
|
|
|
Morocho-Cayamcela, M. E. (2020). Increasing the Segmentation Accuracy of Aerial Images with Dilated Spatial Pyramid Pooling. Electronic Letters on Computer Vision and Image Analysis (ELCVIA), Vol. 19(Issue 2), pp. 17–21.
|
|