|
Benítez-Quintero J., Q. - P. O., Calderon, Fernanda. (2022). Notes on Sulfur Fluxes in Urban Areas with Industrial Activity. In 20th LACCEI International Multi-Conference for Engineering, Education Caribbean Conference for Engineering and Technology, LACCEI 2022, (Vol. 2022-July).
|
|
|
Patricia L. Suarez, Angel D. Sappa, Boris X. Vintimilla, & Riad I. Hammoud. (2018). Near InfraRed Imagery Colorization. In 25 th IEEE International Conference on Image Processing, ICIP 2018 (pp. 2237–2241).
Abstract: This paper proposes a stacked conditional Generative
Adversarial Network-based method for Near InfraRed
(NIR) imagery colorization. We propose a variant architecture
of Generative Adversarial Network (GAN) that uses multiple
loss functions over a conditional probabilistic generative model.
We show that this new architecture/loss-function yields better
generalization and representation of the generated colored IR
images. The proposed approach is evaluated on a large test
dataset and compared to recent state of the art methods using
standard metrics.1
Index Terms—Convolutional Neural Networks (CNN), Generative
Adversarial Network (GAN), Infrared Imagery colorization.
|
|
|
Mehri, A., Ardakani, P.B., Sappa, A.D. (2021). LiNet: A Lightweight Network for Image Super Resolution. In 25th International Conference on Pattern Recognition (ICPR), enero 10-15, 2021 (pp. 7196–7202).
|
|
|
Emmanuel Moran, B. V. & M. R. (2023). Towards a Robust Solution for the Supermarket Shelf Audit Problem. In 26th Iberoamerican Congress on Pattern Recognition (CIARP 2023) Coimbra 27-30 November 2023 (Vol. Vol. 14469 LNCS, pp. 257–271).
|
|
|
Tommy David Beltran Borbor, R. J. V. R., Luis Enrique Chuquimarca Jiménez, Boris Xavier Vintimilla Burgos & Sergio Alejandro Velastin. (2025). Fruit Deformity Classification through Single-Input and Multi-Input Architectures based on CNN Models using Real and Synthetic Images. In 27th The Iberomican Congress on Pattern Recognition CIARP 2024 Talca 26 – 29 November 2024 (Vol. Vol. 15368 LNCS, pp. 46–62).
|
|
|
Patricia L. Suarez, Angel D. Sappa, & Boris X. Vintimilla. (2017). Learning Image Vegetation Index through a Conditional Generative Adversarial Network. In 2nd IEEE Ecuador Tehcnnical Chapters Meeting (ETCM).
|
|
|
Henry Velesaca Lara, P. S., Darío Carpio & Angel Sappa. (2024). Fruit Grading based on Deep Learning and Active Vision System. In 2nd International Conference of Applied Industrial Engineering: Intelligent Production Automation and its Sustainable Development, CIIA 2024 Guayaquil 28 – 30 May 2024 (Vol. Vol. 532).
|
|
|
Jorge Alvarez, Mireya Zapata, & Dennys Paillacho. (2019). Mechanical Design of a spatial mechanism for the robot head movements in social robotics for the evaluation of Human-Robot Interaction. In 2nd International Conference on Human Systems Engineering and Design: Future Trends and Applications (IHSED 2019); Munich, Alemania (Vol. 1026, pp. 160–165).
|
|
|
Mildred Cruz, Cristhian A. Aguilera, Boris X. Vintimilla, Ricardo Toledo, & Ángel D. Sappa. (2015). Cross-spectral image registration and fusion: an evaluation study. In 2nd International Conference on Machine Vision and Machine Learning (Vol. 331). Barcelona, Spain: Computer Vision Center.
Abstract: This paper presents a preliminary study on the registration and fusion of cross-spectral imaging. The objective is to evaluate the validity of widely used computer vision approaches when they are applied at different spectral bands. In particular, we are interested in merging images from the infrared (both long wave infrared: LWIR and near infrared: NIR) and visible spectrum (VS). Experimental results with different data sets are presented.
|
|
|
Miguel Realpe, Boris X. Vintimilla, & Ljubo Vlacic. (2015). Sensor Fault Detection and Diagnosis for autonomous vehicles. In 2nd International Conference on Mechatronics, Automation and Manufacturing (ICMAM 2015), International Conference on, Singapur, 2015 (Vol. 30, pp. 1–6). EDP Sciences.
Abstract: In recent years testing autonomous vehicles on public roads has become a reality. However, before having autonomous vehicles completely accepted on the roads, they have to demonstrate safe operation and reliable interaction with other traffic participants. Furthermore, in real situations and long term operation, there is always the possibility that diverse components may fail. This paper deals with possible sensor faults by defining a federated sensor data fusion architecture. The proposed architecture is designed to detect obstacles in an autonomous vehicle’s environment while detecting a faulty sensor using SVM models for fault detection and diagnosis. Experimental results using sensor information from the KITTI dataset confirm the feasibility of the proposed architecture to detect soft and hard faults from a particular sensor.
|
|