|
Sianna Puente, Cindy Madrid, Miguel Realpe, & Boris X. Vintimilla. (2017). An Empirical Comparison of DCNN libraries to implement the Vision Module of a Danger Management System. In 2017 International Conference on Deep Learning Technologies (ICDLT 2017) (Vol. Part F128535, pp. 60–65).
|
|
|
Xavier Soria, Edgar Riba, & Angel D. Sappa. (2020). Dense Extreme Inception Network: Towards a Robust CNN Model for Edge Detection. In 2020 IEEE Winter Conference on Applications of Computer Vision (WACV) (pp. 1912–1921).
Abstract: This paper proposes a Deep Learning based edge de- tector, which is inspired on both HED (Holistically-Nested Edge Detection) and Xception networks. The proposed ap- proach generates thin edge-maps that are plausible for hu- man eyes; it can be used in any edge detection task without previous training or fine tuning process. As a second contri- bution, a large dataset with carefully annotated edges, has been generated. This dataset has been used for training the proposed approach as well the state-of-the-art algorithms for comparisons. Quantitative and qualitative evaluations have been performed on different benchmarks showing im- provements with the proposed method when F-measure of ODS and OIS are considered.
|
|
|
Patricia Suarez & Angel D. Sappa. (2025). Synthetic Thermal Image Generation from Multi-Cue Input Data. 20th International Conference on Computer Vision Theory and Applications (VISAPP 2025), .
|
|
|
Gisel Bastidas G., P. M. V., Boris Vintimilla & Angel D. Sappa. (2025). Application-Guided Image Fusion: A Path to Improve Results in High-Level Vision Tasks. 20th International Conference on Computer Vision Theory and Applications VISAPP 2025, .
|
|
|
Benítez-Quintero J., Q. - P. O., Calderon, Fernanda. (2022). Notes on Sulfur Fluxes in Urban Areas with Industrial Activity. In 20th LACCEI International Multi-Conference for Engineering, Education Caribbean Conference for Engineering and Technology, LACCEI 2022, (Vol. 2022-July).
|
|
|
Patricia L. Suarez, Angel D. Sappa, Boris X. Vintimilla, & Riad I. Hammoud. (2018). Near InfraRed Imagery Colorization. In 25 th IEEE International Conference on Image Processing, ICIP 2018 (pp. 2237–2241).
Abstract: This paper proposes a stacked conditional Generative
Adversarial Network-based method for Near InfraRed
(NIR) imagery colorization. We propose a variant architecture
of Generative Adversarial Network (GAN) that uses multiple
loss functions over a conditional probabilistic generative model.
We show that this new architecture/loss-function yields better
generalization and representation of the generated colored IR
images. The proposed approach is evaluated on a large test
dataset and compared to recent state of the art methods using
standard metrics.1
Index Terms—Convolutional Neural Networks (CNN), Generative
Adversarial Network (GAN), Infrared Imagery colorization.
|
|
|
Mehri, A., Ardakani, P.B., Sappa, A.D. (2021). LiNet: A Lightweight Network for Image Super Resolution. In 25th International Conference on Pattern Recognition (ICPR), enero 10-15, 2021 (pp. 7196–7202).
|
|
|
Emmanuel Moran, B. V. & M. R. (2023). Towards a Robust Solution for the Supermarket Shelf Audit Problem. In 26th Iberoamerican Congress on Pattern Recognition (CIARP 2023) Coimbra 27-30 November 2023 (Vol. Vol. 14469 LNCS, pp. 257–271).
|
|
|
Patricia L. Suarez, Angel D. Sappa, & Boris X. Vintimilla. (2017). Learning Image Vegetation Index through a Conditional Generative Adversarial Network. In 2nd IEEE Ecuador Tehcnnical Chapters Meeting (ETCM).
|
|
|
Henry Velesaca Lara, P. S., Darío Carpio & Angel Sappa. (2024). Fruit Grading based on Deep Learning and Active Vision System. In 2nd International Conference of Applied Industrial Engineering: Intelligent Production Automation and its Sustainable Development, CIIA 2024 Guayaquil 28 – 30 May 2024 (Vol. Vol. 532).
|
|